The benefits and safety of intravenous recombinant tissue plasminogen activator (IV-tPA) for patients with mild ischaemic stroke (MIS) are still unclear. The objective of this meta-analysis was to evaluate the efficacy and safety of IV-tPA as treatment for patients with MIS. We performed a systematic literature search across MEDLINE, Embase, Central, Global Health and Cumulative Index to Nursing and Allied Health Literature (CINAHL), from inception to 10 November 2016, to identify all related studies. Where possible, data were pooled for meta-analysis with odds ratio (OR) and corresponding 95% confidence interval (CI) using the fixed-effects model. MIS was defined as having National Institutes of Health Stroke Scale score of ≤6. We included seven studies with a total of 1591 patients based on the prespecified inclusion and exclusion criteria. The meta-analysis indicated a high odds of excellent functional outcome based on the modified Rankin Scale or Oxfordshire Handicap Score 0-1 (OR=1.43; 95% CI 1.14 to 1.79; P=0.002, I2=35%) in patients treated with IV-tPA compared with those not treated with IV-tPA (74.8% vs 67.6%). There was a high risk of symptomatic intracranial haemorrhage (sICH) with IV-tPA treatment (OR=10.13; 95% CI 1.93 to 53.02; P=0.006, I2=0%) (1.9% vs 0.0%) but not mortality (OR=0.78; 95% CI 0.43 to 1.43; P=0.43, I2=0%) (2.4% vs 2.9%). Treatment with IV-tPA was associated with better functional outcome but not mortality among patients with MIS, although there was an increased risk of sICH. Randomised trials are warranted to confirm these findings.
Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide. Because of its high recurrence rate and heterogeneity, effective treatment for advanced stage of HCC is currently lacking. There are accumulating evidences showing the therapeutic potential of pharmacologic vitamin C (VC) on HCC. However, the metabolic basis underlying the anticancer property of VC remains to be elucidated. In this study, we used a high-resolution proton nuclear magnetic resonance-based metabolomics technique to assess the global metabolic changes in HCC cells following VC treatment. In addition, the HCC cells were also treated with oxaliplatin (OXA) to explore the potential synergistic effect induced by the combined VC and OXA treatment. The current metabolomics data suggested different mechanisms of OXA and VC in modulating cell growth and metabolism. In general, VC treatment led to inhibition of energy metabolism via NAD+ depletion and amino acid deprivation. On the other hand, OXA caused significant perturbation in phospholipid biosynthesis and phosphatidylcholine biosynthesis pathways. The current results highlighted glutathione metabolism, and pathways related to succinate and choline may play central roles in conferring the combined effect between OXA and VC. Taken together, this study provided metabolic evidence of VC and OXA in treating HCC and may contribute toward the potential application of combined VC and OXA as complementary HCC therapies.
Epoxy resins are important thermosetting polymers. They are widely used in many applications i.e., adhesives, plastics, coatings and sealers. Epoxy molding compounds have attained dominance among common materials due to their excellent mechanical properties. The sol-gel simple method was applied to distinguish the impact on the colloidal time. The properties were obtained with silica-based fillers to enable their mechanical and thermal improvement. The work which we have done here on epoxy-based nanocomposites was successfully modified. The purpose of this research was to look into the effects of cellulose nanocrystals (CNCs) on various properties and applications. CNCs have recently attracted a lot of interest in a variety of industries due to their high aspect ratio, and low density which makes them perfect candidates. Adding different amounts of silica-based nanocomposites to the epoxy system. Analyzed with different techniques such as Fourier-transformed infrared spectroscope (FTIR), thermogravimetric analysis (TGA) and scanning electronic microscopic (SEM) to investigate the morphological properties of modified composites. The various %-age of silica composite was prepared in the epoxy system. The 20% of silica was shown greater enhancement and improvement. They show a better result than D-400 epoxy. Increasing the silica, the transparency of the films decreased, because clustering appears. This shows that the broad use of CNCs in environmental engineering applications is possible, particularly for surface modification, which was evaluated for qualities such as absorption and chemical resistant behavior.
Marinobacter is the abundant and important algal-associated and hydrocarbon biodegradation bacteria in the ocean. However, little knowledge about their phages has been reported. Here, a novel siphovirus, vB_MalS-PS3, infecting Marinobacter algicola DG893(T), was isolated from the surface waters of the western Pacific Ocean. Transmission electron microscopy (TEM) indicated that vB_MalS-PS3 has the morphology of siphoviruses. VB_MalS-PS3 was stable from -20 to 55°C, and with the latent and rise periods of about 80 and 10 min, respectively. The genome sequence of VB_MalS-PS3 contains a linear, double-strand 42,168-bp DNA molecule with a G + C content of 56.23% and 54 putative open reading frames (ORFs). Nineteen conserved domains were predicted by BLASTp in NCBI. We found that vB_MalS-PS3 represent an understudied viral group with only one known isolate. The phylogenetic tree based on the amino acid sequences of whole genomes revealed that vB_MalS-PS3 has a distant evolutionary relationship with other siphoviruses, and can be grouped into a novel viral genus cluster with six uncultured assembled viral genomes from metagenomics, named here as Marinovirus. This study of the Marinobacter phage vB_MalS-PS3 genome enriched the genetic database of marine bacteriophages, in addition, will provide useful information for further research on the interaction between Marinobacter phages and their hosts, and their relationship with algal blooms and hydrocarbon biodegradation in the ocean.