Displaying all 9 publications

Abstract:
Sort:
  1. Ong WJ, Tan LL, Chai SP, Yong ST
    Dalton Trans, 2015 Jan 21;44(3):1249-57.
    PMID: 25415620 DOI: 10.1039/c4dt02940b
    In this paper, noble-metal Pt nanoparticles of around 2.5 nm were deposited on graphitic carbon nitride (g-C3N4) synthesized by a chemical reduction process in ethylene glycol. Compared with pure g-C3N4, the resulting Pt-loaded g-C3N4 (Pt/CN) exhibited a considerable improvement in the photoreduction of CO2 to CH4 in the presence of water vapor at ambient temperature and atmospheric pressure under visible light irradiation. 2 wt% Pt-loaded g-C3N4 (2Pt/CN) nanocomposites produced the highest CH4 yield of 13.02 μmol gcatalyst(-1) after 10 h of light irradiation, which was a 5.1-fold enhancement in comparison with pure g-C3N4 (2.55 μmol gcatalyst(-1)). The remarkable photocatalytic activity of Pt/CN nanostructures in the CH4 production was ascribed to the enhanced visible light absorption and efficient interfacial transfer of photogenerated electrons from g-C3N4 to Pt due to the lower Fermi level of Pt in the Pt/CN hybrid heterojunctions as evidenced by the UV-Vis and photoluminescence studies. The enriched electron density on Pt favored the reduction of CO2 to CH4via a multi-electron transfer process. This resulted in the inhibition of electron-hole pair recombination for effective spatial charge separation, thus enhancing the photocatalytic reactions. Based on the experimental results obtained, a plausible mechanism for improved photocatalytic performance associated with Pt/CN was proposed.
  2. Ong WJ, Tan LL, Chai SP, Yong ST
    Chem Commun (Camb), 2015 Jan 18;51(5):858-61.
    PMID: 25429376 DOI: 10.1039/c4cc08996k
    A facile one-pot impregnation-thermal reduction strategy was employed to fabricate sandwich-like graphene-g-C3N4 (GCN) nanocomposites using urea and graphene oxide as precursors. The GCN sample exhibited a slight red shift of the absorption band edge attributed to the formation of a C-O-C bond as a covalent cross linker between graphene and g-C3N4. The GCN sample demonstrated high visible-light photoactivity towards CO2 reduction under ambient conditions, exhibiting a 2.3-fold enhancement over pure g-C3N4. This was ascribed to the inhibition of electron-hole pair recombination by graphene, which increased the charge transfer.
  3. Ong WJ, Tan LL, Chai SP, Yong ST, Mohamed AR
    Nanoscale, 2014 Feb 21;6(4):1946-2008.
    PMID: 24384624 DOI: 10.1039/c3nr04655a
    Titanium dioxide (TiO2) is one of the most widely investigated metal oxides due to its extraordinary surface, electronic and catalytic properties. However, the large band gap of TiO2 and massive recombination of photogenerated electron-hole pairs limit its photocatalytic and photovoltaic efficiency. Therefore, increasing research attention is now being directed towards engineering the surface structure of TiO2 at the most fundamental and atomic level namely morphological control of {001} facets in the range of microscale and nanoscale to fine-tune its physicochemical properties, which could ultimately lead to the optimization of its selectivity and reactivity. The synthesis of {001}-faceted TiO2 is currently one of the most active interdisciplinary research areas and demonstrations of catalytic enhancement are abundant. Modifications such as metal and non-metal doping have also been extensively studied to extend its band gap to the visible light region. This steady progress has demonstrated that TiO2-based composites with {001} facets are playing and will continue to play an indispensable role in the environmental remediation and in the search for clean and renewable energy technologies. This review encompasses the state-of-the-art research activities and latest advancements in the design of highly reactive {001} facet-dominated TiO2via various strategies, including hydrothermal/solvothermal, high temperature gas phase reactions and non-hydrolytic alcoholysis methods. The stabilization of {001} facets using fluorine-containing species and fluorine-free capping agents is also critically discussed in this review. To overcome the large band gap of TiO2 and rapid recombination of photogenerated charge carriers, modifications are carried out to manipulate its electronic band structure, including transition metal doping, noble metal doping, non-metal doping and incorporating graphene as a two-dimensional (2D) catalyst support. The advancements made in these aspects are thoroughly examined, with additional insights related to the charge transfer events for each strategy of the modified-TiO2 composites. Finally, we offer a summary and some invigorating perspectives on the major challenges and new research directions for future exploitation in this emerging frontier, which we hope will advance us to rationally harness the outstanding structural and electronic properties of {001} facets for various environmental and energy-related applications.
  4. Ong WJ, Tan LL, Chai SP, Yong ST, Mohamed AR
    ChemSusChem, 2014 Mar;7(3):690-719.
    PMID: 24532412 DOI: 10.1002/cssc.201300924
    Titanium dioxide (TiO2 ) is one of the most widely investigated metal oxides because of its extraordinary surface, electronic, and photocatalytic properties. However, the large band gap of TiO2 and the considerable recombination of photogenerated electron-hole pairs limit its photocatalytic efficiency. Therefore, research attention is being increasingly directed towards engineering the surface structure of TiO2 on the atomic level (namely morphological control of {001} facets on the micro- and nanoscale) to fine-tune its physicochemical properties; this could ultimately lead to the optimization of selectivity and reactivity. This Review encompasses the fundamental principles to enhance the photocatalytic activity by using highly reactive {001}-faceted TiO2 -based composites. The current progress of such composites, with particular emphasis on the photodegradation of pollutants and photocatalytic water splitting for hydrogen generation, is also discussed. The progresses made are thoroughly examined for achieving remarkable photocatalytic performances, with additional insights with regard to charge transfer. Finally, a summary and some perspectives on the challenges and new research directions for future exploitation in this emerging frontier are provided, which hopefully would allow for harnessing the outstanding structural and electronic properties of {001} facets for various energy- and environmental-related applications.
  5. Tang SG, Sieo CC, Kalavathy R, Saad WZ, Yong ST, Wong HK, et al.
    J Food Sci, 2015 Aug;80(8):C1686-95.
    PMID: 26174350 DOI: 10.1111/1750-3841.12947
    A 16-wk feeding experiment was conducted to investigate the effects of a prebiotic, isomaltooligosaccharide (IMO), a probiotic, PrimaLac®, and their combination as a synbiotic on the chemical compositions of egg yolks and the egg quality of laying hens. One hundred and sixty 16-wk-old Hisex Brown pullets were randomly assigned to 4 dietary treatments: (i) basal diet (control), (ii) basal diet + 1% IMO (PRE), (iii) basal diet + 0.1% PrimaLac® (PRO), and (iv) basal diet + 1% IMO + 0.1% PrimaLac® (SYN). PRE, PRO, or SYN supplementation not only significantly (P < 0.05) decreased the egg yolk cholesterol (24- and 28-wk-old) and total saturated fatty acids (SFA; 28-, 32-, and 36-wk-old), but also significantly (P < 0.05) increased total unsaturated fatty acids (UFA; 28-, 32-, and 36-wk-old), total omega 6 and polyunsaturated fatty acids (PUFA), including linoleic and alpha-linolenic acid levels in the eggs (28-wk-old). However, the total lipids, carotenoids, and tocopherols in the egg yolks were similar among all dietary treatments in the 24-, 28-, 32-, and 36-wk-old hens. Egg quality (Haugh unit, relative weights of the albumen and yolk, specific gravity, shell thickness, and yolk color) was not affected by PRE, PRO, or SYN supplementation. The results indicate that supplementations with IMO and PrimaLac® alone or in combination as a synbiotic might be useful for improving the cholesterol content and modifying the fatty acid compositions of egg yolk without affecting the quality of eggs from laying hens between 24 and 36 wk of age.
  6. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP
    Chem Rev, 2016 06 22;116(12):7159-329.
    PMID: 27199146 DOI: 10.1021/acs.chemrev.6b00075
    As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and "earth-abundant" nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The construction and characteristics of each classification of the heterojunction system will be critically reviewed, namely metal-g-C3N4, semiconductor-g-C3N4, isotype g-C3N4/g-C3N4, graphitic carbon-g-C3N4, conducting polymer-g-C3N4, sensitizer-g-C3N4, and multicomponent heterojunctions. The band structures, electronic properties, optical absorption, and interfacial charge transfer of g-C3N4-based heterostructured nanohybrids will also be theoretically discussed based on the first-principles density functional theory (DFT) calculations to provide insightful outlooks on the charge carrier dynamics. Apart from that, the advancement of the versatile photoredox applications toward artificial photosynthesis (water splitting and photofixation of CO2), environmental decontamination, and bacteria disinfection will be presented in detail. Last but not least, this comprehensive review will conclude with a summary and some invigorating perspectives on the challenges and future directions at the forefront of this research platform. It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
  7. Peng TC, Lavin P, Pedraza RO, Fierro-Vásquez N, Purcarea C, Yong ST, et al.
    Data Brief, 2024 Apr;53:110143.
    PMID: 38419763 DOI: 10.1016/j.dib.2024.110143
    Here, we report the draft genome sequence and assembly of the Penicillium sp. strain E22, which was isolated from Antarctic soil of Deception Island, South Shetland Islands close to the Antarctic Peninsula. The genome was sequenced using a 2 # 250 bp paired-end method by Illumina MiSeq 6000. The genome assembly was performed using softwares implemented in the Kbase web service. The phylogenetic tree of strain E22 comparing its internal transcribed spacer (ITS) region with the other Penicillium showed high genetic similarity to Penicillium griseofulvum MN545450 and Penicillium camemberti MT530220. Draf genome of Penicillium sp. strain E22 comprises 33,653 coding sequences, with a high G + C content of 48.32% and a total size of 37,484,944 bp. This draft genome assembly version has been deposited at GenBank under accession JASJUN000000000.
  8. Lavin P, Henríquez-Castillo C, Yong ST, Valenzuela-Heredia D, Oses R, Frez K, et al.
    Microbiol Resour Announc, 2021 Feb 04;10(5).
    PMID: 33541887 DOI: 10.1128/MRA.01453-20
    The draft genome sequence of Streptomyces fildesensis strain INACH3013, a psychrotrophic bacterium isolated from Northwest Antarctic soil, was reported. The genome sequence totaling 9,306,785 bp resulted from 122 contigs characterized by a GC content of 70.55%.
  9. Fernando HA, Chandramouli C, Rosli D, Lam YL, Yong ST, Yaw HP, et al.
    Nutrients, 2014 Nov 04;6(11):4856-71.
    PMID: 25375630 DOI: 10.3390/nu6114856
    Glycyrrhizic acid (GA) ameliorates many components of the metabolic syndrome, but its potential therapeutic use is marred by edema caused by inhibition of renal 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2). We assessed whether 100 mg/kg per day GA administered orally could promote metabolic benefits without causing edema in rats fed on a high-sucrose diet. Groups of eight male rats were fed on one of three diets for 28 days: normal diet, a high-sucrose diet, or a high-sucrose diet supplemented with GA. Rats were then culled and renal 11β-HSD2 activity, as well as serum sodium, potassium, angiotensin II and leptin levels were determined. Histological analyses were performed to assess changes in adipocyte size in visceral and subcutaneous depots, as well as hepatic and renal tissue morphology. This dosing paradigm of GA attenuated the increases in serum leptin levels and visceral, but not subcutaneous adipocyte size caused by the high-sucrose diet. Although GA decreased renal 11β-HSD2 activity, it did not affect serum electrolyte or angiotensin II levels, indicating no onset of edema. Furthermore, there were no apparent morphological changes in the liver or kidney, indicating no toxicity. In conclusion, it is possible to reap metabolic benefits of GA without edema using the current dosage and treatment time.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links