Displaying all 12 publications

Abstract:
Sort:
  1. Yau YH, Chew BT
    Indoor Air, 2009 Dec;19(6):500-10.
    PMID: 19719535 DOI: 10.1111/j.1600-0668.2009.00617.x
    This article presents findings of the thermal comfort study in hospitals. A field survey was conducted to investigate the temperature range for thermal comfort in hospitals in the tropics. Thermal acceptability assessment was conducted to examine whether the hospitals in the tropics met the ASHRAE Standard-55 80% acceptability criteria. A total of 114 occupants in four hospitals were involved in the study. The results of the field study revealed that only 44% of the examined locations met the comfort criteria specified in ASHRAE Standard 55. The survey also examined the predicted percentage of dissatisfied in the hospitals. The results showed that 49% of the occupants were satisfied with the thermal environments in the hospitals. The field survey analysis revealed that the neutral temperature for Malaysian hospitals was 26.4 degrees C. The comfort temperature range that satisfied 90% of the occupants in the space was in the range of 25.3-28.2 degrees C. The results from the field study suggested that a higher comfort temperature was required for Malaysians in hospital environments compared with the temperature criteria specified in ASHRAE Standard (2003). In addition, the significant deviation between actual mean vote and predicted mean vote (PMV) strongly implied that PMV could not be applied without errors in hospitals in the tropics.
  2. Yau YH, Chandrasegaran D, Badarudin A
    Build Environ, 2011 May;46(5):1125-1132.
    PMID: 32288016 DOI: 10.1016/j.buildenv.2010.11.013
    Hospital and healthcare facilities have diverse indoor environment due to the different comfort and health needs of its occupants. Currently, most ventilation studies revolve around specialised areas such as operating rooms and isolation rooms. This paper focuses on the ventilation of multiple-bed hospital wards in the tropical climate, taking into account the design, indoor conditions and engineering controls. General ward layouts are described briefly. The required indoor conditions such as temperature, humidity, air movements and indoor air quality in the ward spaces are summarized based on the current guidelines and practices. Also, recent studies and engineering practices in the hospital indoor environment are elaborated. Usage of computational fluid dynamics tools for the ventilation studies is discussed as well. As identified during the review, there is an apparent knowledge gap for ventilation studies in the tropics compared with temperate climates, as fact studies have only been published for hospital wards in countries with a temperate climate. Therefore, it is highlighted that specific tropical studies along with novel engineering controls are required in addressing the ventilation requirements for the tropics.
  3. Yau YH, Poh KS, Badarudin A
    J Environ Health Sci Eng, 2018 Dec;16(2):313-322.
    PMID: 30729002 DOI: 10.1007/s40201-018-0319-1
    The current case study was conducted to identify the causes of environmental health issues in the office space associated with the existing Underfloor Air Distribution (UFAD) system in a high-rise office building in the tropics. The causes of the indoor environmental quality degradation are the key to resolve the environmental health issues. Thus, the parameters such as the indoor air temperature, relative humidity (RH), relative air velocity, carbon monoxide (CO), carbon dioxide (CO2), formaldehyde, total volatile organic compound (TVOC) and particulate matter (PM10) were evaluated in five office spaces. The results showed that the diffusers were not effective in creating air mixing at the occupied space. The RH has exceeded the threshold limit of 70%. The CO2 concentration has exceeded 1000 ppm, and the formaldehyde has exceeded 0.1 ppm. These indicate the poor design and maintenance of the building that lead to the degradation of indoor environmental quality. Long exposure to the poor indoor environmental quality will cause permanent health damages. The Indoor Air Quality (IAQ) management plan must be established and implemented in the ongoing basis to ensure the health of the occupants are safeguarded. As part of the plan, the practice to conduct an IAQ assessment once every 3 years is recommended to ensure the health and well-being of the occupants are safeguarded.
  4. Yau YH, Toh HS, Chew BT, Nik Ghazali NN
    J Therm Anal Calorim, 2022;147(24):14739-14763.
    PMID: 36160300 DOI: 10.1007/s10973-022-11585-0
    This paper presented a review of the literature on the human thermal comfort model, which can be employed to predict the response of a human towards the environmental surroundings. An important premise of this paper is that governments in tropical regions have taken proactive action in minimizing energy consumption by air-conditioning through elevated room temperature. However, would such an action worsen the quality of interior conditions, particularly the thermal comfort? To answer this question, developing a human thermal comfort model under stratum ventilation mode can become a reference model for air-conditioning system design in all tropical buildings and indirectly reduce the emission of carbon dioxide (CO2) from heating, ventilation, and air-conditioning (HVAC) system that caused a warmer environment. For this purpose, there are two critical processes to identify the role of human thermal comfort, namely human reaction towards the thermal ambient (thermoregulation) and the heat transfer and air movement that occur in the enclosed space due to natural and forced convection.
  5. Ataollahi Oshkour A, Pramanik S, Shirazi SF, Mehrali M, Yau YH, Abu Osman NA
    ScientificWorldJournal, 2014;2014:616804.
    PMID: 25538954 DOI: 10.1155/2014/616804
    This study investigated the impact of calcium silicate (CS) content on composition, compressive mechanical properties, and hardness of CS cermets with Ti-55Ni and Ti-6Al-4V alloys sintered at 1200°C. The powder metallurgy route was exploited to prepare the cermets. New phases of materials of Ni16Ti6Si7, CaTiO3, and Ni31Si12 appeared in cermet of Ti-55Ni with CS and in cermet of Ti-6Al-4V with CS, the new phases Ti5Si3, Ti2O, and CaTiO3, which were emerged during sintering at different CS content (wt%). The minimum shrinkage and density were observed in both groups of cermets for the 50 and 100 wt% CS content, respectively. The cermets with 40 wt% of CS had minimum compressive Young's modulus. The minimum of compressive strength and strain percentage at maximum load were revealed in cermets with 50 and 40 wt% of CS with Ti-55Ni and Ti-6Al-4V cermets, respectively. The cermets with 80 and 90 wt% of CS showed more plasticity than the pure CS. It concluded that the composition and mechanical properties of sintered cermets of Ti-55Ni and Ti-6Al-4V with CS significantly depend on the CS content in raw cermet materials. Thus, the different mechanical properties of the cermets can be used as potential materials for different hard tissues replacements.
  6. Oshkour AA, Talebi H, Shirazi SF, Bayat M, Yau YH, Tarlochan F, et al.
    ScientificWorldJournal, 2014;2014:807621.
    PMID: 25302331 DOI: 10.1155/2014/807621
    This study is focused on finite element analysis of a model comprising femur into which a femoral component of a total hip replacement was implanted. The considered prosthesis is fabricated from a functionally graded material (FGM) comprising a layer of a titanium alloy bonded to a layer of hydroxyapatite. The elastic modulus of the FGM was adjusted in the radial, longitudinal, and longitudinal-radial directions by altering the volume fraction gradient exponent. Four cases were studied, involving two different methods of anchoring the prosthesis to the spongy bone and two cases of applied loading. The results revealed that the FG prostheses provoked more SED to the bone. The FG prostheses carried less stress, while more stress was induced to the bone and cement. Meanwhile, less shear interface stress was stimulated to the prosthesis-bone interface in the noncemented FG prostheses. The cement-bone interface carried more stress compared to the prosthesis-cement interface. Stair climbing induced more harmful effects to the implanted femur components compared to the normal walking by causing more stress. Therefore, stress shielding, developed stresses, and interface stresses in the THR components could be adjusted through the controlling stiffness of the FG prosthesis by managing volume fraction gradient exponent.
  7. Oshkour AA, Talebi H, Seyed Shirazi SF, Yau YH, Tarlochan F, Abu Osman NA
    Artif Organs, 2015 Feb;39(2):156-64.
    PMID: 24841371 DOI: 10.1111/aor.12315
    This study aimed to assess the performance of different longitudinal functionally graded femoral prostheses. This study was also designed to develop an appropriate prosthetic geometric design for longitudinal functionally graded materials. Three-dimensional models of the femur and prostheses were developed and analyzed. The elastic modulus of these prostheses in the sagittal plane was adjusted along a gradient direction from the distal end to the proximal end. Furthermore, these prostheses were composed of titanium alloy and hydroxyapatite. Results revealed that strain energy, interface stress, and developed stress in the femoral prosthesis and the bone were influenced by prosthetic geometry and gradient index. In all of the prostheses with different geometries, strain energy increased as gradient index increased. Interface stress and developed stress decreased. The minimum principal stress and the maximum principal stress of the bone slightly increased as gradient index increased. Hence, the combination of the femoral prosthetic geometry and functionally graded materials can be employed to decrease stress shielding. Such a combination can also be utilized to achieve equilibrium in terms of the stress applied on the implanted femur constituents; thus, the lifespan of total hip replacement can be prolonged.
  8. Oshkour AA, Abu Osman NA, Davoodi MM, Yau YH, Tarlochan F, Wan Abas WA, et al.
    Int J Numer Method Biomed Eng, 2013 Dec;29(12):1412-27.
    PMID: 23922316 DOI: 10.1002/cnm.2583
    This study focused on developing a 3D finite element model of functionally graded femoral prostheses to decrease stress shielding and to improve total hip replacement performance. The mechanical properties of the modeled functionally graded femoral prostheses were adjusted in the sagittal and transverse planes by changing the volume fraction gradient exponent. Prostheses with material changes in the sagittal and transverse planes were considered longitudinal and radial prostheses, respectively. The effects of cemented and noncemented implantation methods were also considered in this study. Strain energy and von Mises stresses were determined at the femoral proximal metaphysis and interfaces of the implanted femur components, respectively. Results demonstrated that the strain energy increased proportionally with increasing volume fraction gradient exponent, whereas the interface stresses decreased on the prostheses surfaces. A limited increase was also observed at the surfaces of the bone and cement. The periprosthetic femur with a noncemented prosthesis exhibited higher strain energy than with a cemented prosthesis. Radial prostheses implantation displayed more strain energy than longitudinal prostheses implantation in the femoral proximal part. Functionally graded materials also increased strain energy and exhibited promising potentials as substitutes of conventional materials to decrease stress shielding and to enhance total hip replacement lifespan.
  9. Oshkour AA, Abu Osman NA, Yau YH, Tarlochan F, Abas WA
    Proc Inst Mech Eng H, 2013 Jan;227(1):3-17.
    PMID: 23516951
    This study aimed to develop a three-dimensional finite element model of a functionally graded femoral prosthesis. The model consisted of a femoral prosthesis created from functionally graded materials (FGMs), cement, and femur. The hip prosthesis was composed of FGMs made of titanium alloy, chrome-cobalt, and hydroxyapatite at volume fraction gradient exponents of 0, 1, and 5, respectively. The stress was measured on the femoral prosthesis, cement, and femur. Stress on the neck of the femoral prosthesis was not sensitive to the properties of the constituent material. However, stress on the stem and cement decreased proportionally as the volume fraction gradient exponent of the FGM increased. Meanwhile, stress became uniform on the cement mantle layer. In addition, stress on the femur in the proximal part increased and a high surface area of the femoral part was involved in absorbing the stress. As such, the stress-shielding area decreased. The results obtained in this study are significant in the design and longevity of new prosthetic devices because FGMs offer the potential to achieve stress distribution that more closely resembles that of the natural bone in the femur.
  10. Ataollahi Oshkour A, Pramanik S, Mehrali M, Yau YH, Tarlochan F, Abu Osman NA
    J Mech Behav Biomed Mater, 2015 Sep;49:321-31.
    PMID: 26072197 DOI: 10.1016/j.jmbbm.2015.05.020
    This study aimed to investigate the structural, physical and mechanical behavior of composites and functionally graded materials (FGMs) made of stainless steel (SS-316L)/hydroxyapatite (HA) and SS-316L/calcium silicate (CS) employing powder metallurgical solid state sintering. The structural analysis using X-ray diffraction showed that the sintering at high temperature led to the reaction between compounds of the SS-316L and HA, while SS-316L and CS remained intact during the sintering process in composites of SS-316L/CS. A dimensional expansion was found in the composites made of 40 and 50 wt% HA. The minimum shrinkage was emerged in 50 wt% CS composite, while the maximum shrinkage was revealed in samples with pure SS-316L, HA and CS. Compressive mechanical properties of SS-316L/HA decreased sharply with increasing of HA content up to 20 wt% and gradually with CS content up to 50 wt% for SS-316L/CS composites. The mechanical properties of the FGM of SS-316L/HA dropped with increase in temperature, while it was improved for the FGM of SS-316L/CS with temperature enhancement. It has been found that the FGMs emerged a better compressive mechanical properties compared to both the composite systems. Therefore, the SS-316L/CS composites and their FGMs have superior compressive mechanical properties to the SS-316L/HA composites and their FGMs and also the newly developed FGMs of SS-316L/CS with improved mechanical and enhanced gradation in physical and structural properties can potentially be utilized in the components with load-bearing application.
  11. Kwan Z, Khairu Najhan NN, Yau YH, Luximon Y, M Nor F
    Int J Numer Method Biomed Eng, 2020 11;36(11):e3390.
    PMID: 32735083 DOI: 10.1002/cnm.3390
    A realistic three-dimensional (3D) computational model of skin flap closures using Asian-like head templates from two different genders, male and female, has been developed. The current study aimed to understand the biomechanics of the local flap designs along with the effect of wound closures on the respective genders. Two Asian head templates from opposite genders were obtained to use as base models. A third-order Yeoh hyperelastic model was adapted to characterize as skin material properties. A single layer composed of combined epidermis and dermis was considered, and the models were thickened according to respective anatomical positions. Each model gender was excised with a fixed defect size which was consequently covered by three different local flap designs, namely advancement, rotation, and rhomboid flaps. Post-operative simulation presented various scenarios of skin flap closures. Rotation and rhomboid flaps demonstrated maximal tension at the apex of the flap for both genders as well as advancement flap in the female face model. However, advancement flap closure in the male face model was presented otherwise. Yet, the deformation patterns and the peak tension of the discussed flaps were consistent with conventional local flap surgery. Moreover, male face models generated higher stresses compared to the female face models with a 70.34% mean difference. Overall, the skin flap operations were executed manually, and the designed surgery model met the objectives successfully while acknowledging the study limitations. NOVELTY FILE: 3D head templates were considered to address the gap as 3D face models were uncommonly employed in understanding the biomechanics of the local flaps realistically. Most of the existing studies focus on the 2D and 3D planar geometry in their models. As gender comparison has yet to be addressed, we intended to fill this gap by exploring the stress contours of the local flap designs in different genders. Create a 3D face model from two opposite genders which is capable of simulating closure of wounds using local flaps with a focus on advancement, rotation, and rhomboid flaps.
  12. Chang L, Chong WT, Yau YH, Cui T, Wang XR, Pei F, et al.
    PMID: 37360559 DOI: 10.1007/s13762-023-04994-7
    Air quality in subway systems is crucial as it affects the health of passengers and staff. Although most tests of PM2.5 concentrations in subway stations have taken place in public areas, PM2.5 is less understood in workplaces. Few studies have estimated the cumulative inhaled dose of passengers based on real-time changes in PM2.5 concentrations as they commute. To clarify the above issues, this study first measured PM2.5 concentrations in four subway stations in Changchun, China, where measuring points included five workrooms. Then, passengers' exposure to PM2.5 during the whole subway commute (20-30 min) was measured and segmented inhalation was calculated. The results showed that PM2.5 concentration in public places ranged from 50 to 180 μg/m3, and was strongly correlated with outdoors. While the PM2.5 average concentration in workplaces was 60 µg/m3, and it was less affected by outdoor PM2.5 concentration. Passenger's cumulative inhalations in single commuting were about 42 μg and 100 μg when the outdoor PM2.5 concentrations were 20-30 μg/m3 and 120-180 μg/m3, respectively. The PM2.5 inhalation in carriages accounted for the largest proportion of the entire commuting, about 25-40%, because of the longer exposure time and higher PM2.5 concentrations. It is recommended to improve the tightness of the carriage and filter the fresh air to improve the air quality inside. The average daily PM2.5 inhaled by staff was 513.53 μg, which was 5-12 times higher than that of passengers. Installing air purification devices in workplaces and reminding staff to take personal protection can positively protect their health.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links