Displaying all 2 publications

Abstract:
Sort:
  1. Wongnak P, Thanapongtharm W, Kusakunniran W, Karnjanapreechakorn S, Sutassananon K, Kalpravidh W, et al.
    BMC Vet Res, 2020 Aug 24;16(1):300.
    PMID: 32838786 DOI: 10.1186/s12917-020-02502-4
    BACKGROUND: Nipah virus (NiV) is a fatal zoonotic agent that was first identified amongst pig farmers in Malaysia in 1998, in an outbreak that resulted in 105 fatal human cases. That epidemic arose from a chain of infection, initiating from bats to pigs, and which then spilled over from pigs to humans. In Thailand, bat-pig-human communities can be observed across the country, particularly in the central plain. The present study therefore aimed to identify high-risk areas for potential NiV outbreaks and to model how the virus is likely to spread. Multi-criteria decision analysis (MCDA) and weighted linear combination (WLC) were employed to produce the NiV risk map. The map was then overlaid with the nationwide pig movement network to identify the index subdistricts in which NiV may emerge. Subsequently, susceptible-exposed-infectious-removed (SEIR) modeling was used to simulate NiV spread within each subdistrict, and network modeling was used to illustrate how the virus disperses across subdistricts.

    RESULTS: Based on the MCDA and pig movement data, 14 index subdistricts with a high-risk of NiV emergence were identified. We found in our infectious network modeling that the infected subdistricts clustered in, or close to the central plain, within a range of 171 km from the source subdistricts. However, the virus may travel as far as 528.5 km (R0 = 5).

    CONCLUSIONS: In conclusion, the risk of NiV dissemination through pig movement networks in Thailand is low but not negligible. The risk areas identified in our study can help the veterinary authority to allocate financial and human resources to where preventive strategies, such as pig farm regionalization, are required and to contain outbreaks in a timely fashion once they occur.

  2. Colella V, Wongnak P, Tsai YL, Nguyen VL, Tan DY, Tong KBY, et al.
    Commun Med (Lond), 2022 Nov 15;2(1):144.
    PMID: 36380151 DOI: 10.1038/s43856-022-00210-8
    BACKGROUND: A recent dramatic surge in pet ownership has been observed across metropolitan areas in Asia. To date, there is a dearth of information on the risk associated with pet ownership for the transmission of parasites on a large scale in Asia, despite this continent giving rise to the largest burden of zoonotic infections worldwide.

    METHODS: We explored the nature and extent of zoonotic internal (endo-) and external (ecto-) parasites and arthropod-borne pathogens in 2381 client-owned dogs and cats living in metropolitan areas of eight countries in East and Southeast Asia using reliable diagnostic tests and then undertook extensive statistical analyses to define predictors of exposure to zoonotic pathogens.

    RESULTS: The estimated ORs for overall parasite infections are 1.35 [95% CIs 1.07;1.71] in young animals and 4.10 [1.50;11.2] in the animal group older than 15 years as compared with adult animals, 0.61 [0.48;0.77] in neutered animals as compared to unneutered animals, 0.36 [0.26;0.50] in animals living in urban areas as compared with rural areas, 1.14 [1.08;1.21] for each 1 °C increase of annual mean temperature which varies from 12.0 to 28.0 °C, and 0.86 [0.78;0.95] for each year of life expectancy which varies from 70.9 to 83.3 years.

    CONCLUSIONS: Here we highlight the influence of human life expectancy and the neutering status of the animals, which reflect increased living standards through access to education and human and veterinary health care, to be both strongly associated with exposure to zoonotic parasites. An integrated approach of local and international authorities to implement and manage educational programs will be crucial for the control of zoonotic infections of companion animals in Asia.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links