Recently, the interest in active packaging utilization has increased with population growth, food demand and new consumer trend like food delivery services. This new system, however, requires the use of additives to extend the food product quality and safety as well as in maintaining the shelf-life. This study was to prepare the antimicrobial paper from I. cylindrica coated anionic nanocellulose crosslinked cationic to create a system with the ability to actively control microbe growth in the packaging materials. The process involved pulping of I. cylindrica using semi-chemical and soda chemical method. The antimicrobial paper was prepared by printing the pulp suspension in 60 g/m2 grammage in mold followed by the spray of anionic nanocellulose and subsequent soaking of the paper in cationic solution. The results showed the I. cylindrica paper coated anionic nanocellulose crosslinked with H+ and Al3+ cations were successfully produced. The paper produced was also observed to have antimicrobial activity against Gram-negative of E. coli and S. typhi as well as Gram-positive of S. aureus and B. subtilis bacteria. Furthermore, the best coating method was found on antimicrobial paper coated anionic nanocellulose crosslinked Al3+ as evidenced by smoother and compact surface structure.
The dehydration of ethanol into diethyl ether over a SO4/SiO2 catalyst was investigated. The SO4/SiO2 catalysts were prepared by the sulfation method using 1, 2, and 3 M of sulfuric acid (SS1, SS2, and SS3) via hydrothermal treatment. This study is focused on the synthesis of a SO4/SiO2 catalyst with high total acidity that can be subsequently utilized to convert ethanol into diethyl ether. The total acidity test revealed that the sulfation process increased the total acidity of SiO2. The SS2 catalyst (with 2 M sulfuric acid) displayed the highest total acidity of 7.77 mmol/g, whereas the SiO2 total acidity was only 0.11 mmol/g. Meanwhile, the SS3 catalyst (with 3 M sulfuric acid) has a lower total acidity of 7.09 mmol/g due to the distribution of sulfate groups on the surface having reached its optimum condition. The crystallinity and structure of the SS2 catalyst were not affected by the hydrothermal treatment or the sulfate process on silica. Furthermore, The SS2 catalyst characteristics in the presence of sulfate lead to a flaky surface in the morphology and non-uniform particle size. In addition, the surface area and pore volume of the SS2 catalyst decreased (482.56-172.26 m2/g) and (0.297-0.253 cc/g), respectively, because of the presence of sulfate on the silica surface. The SS2 catalyst's pore shape information explains the formation of non-uniform pore sizes and shapes. Finally, the activity and selectivity of SO4/SiO2 catalysts in the conversion of ethanol to diethyl ether yielded the highest ethanol conversion of 70.01% and diethyl ether product of 9.05% from the SS2 catalyst (the catalyst with the highest total acidity). Variations in temperature reaction conditions (175-225 °C) show an optimum reaction temperature to produce diethyl ether at 200 °C (11.36%).