Displaying all 2 publications

Abstract:
Sort:
  1. Ng HS, Kee PE, Yim HS, Chen PT, Wei YH, Chi-Wei Lan J
    Bioresour Technol, 2020 Apr;302:122889.
    PMID: 32033841 DOI: 10.1016/j.biortech.2020.122889
    The increasing amounts of food wastage and accumulation generated per annum due to the growing human population worldwide often associated with environmental pollution issues and scarcity of natural resources. In view of this, science community has worked towards in finding sustainable approaches to replace the common practices for food waste management. The agricultural and food processing wastes rich in nutrients are often the attractive substrates for the bioconversion for valuable bioproducts such as industrial enzymes, biofuel and bioactive compounds. The sustainable approaches on the re-utilization of food wastes as the industrial substrates for production of valuable bioproducts has meet the goals of circular bioeconomy, results in the diversify applications and increasing market demands for the bioproducts. This review discusses the current practice and recent advances on reutilization of food waste for bioconversion of valuable bioproducts from agricultural and food processing wastes.
  2. Zhu HY, Wei YH, Guo LC, Wei XY, Li JN, Zhang RP, et al.
    Int J Syst Evol Microbiol, 2023 Oct;73(10).
    PMID: 37847534 DOI: 10.1099/ijsem.0.006076
    Three strains belonging to the basidiomycetous yeast genus Vishniacozyma were isolated from marine water samples collected from intertidal zones in Liaoning province, northeast China. Phylogenetic analyses based on the sequences of the small subunit (SSU) ribosomal DNA (rDNA), the D1/D2 domain of the large subunit (LSU) ribosomal DNA (rDNA), the internal transcribed spacer region (ITS), the two subunits of DNA polymerase II (RPB1 and RPB2), the translation elongation factor 1-α (TEF1), and the mitochondrial gene cytochrome b (CYTB) showed that these strains together with 20 strains from various geographic and ecological origins from other regions of the world represent a novel species in the genus Vishniacozyma. We propose the name Vishniacozyma pseudocarnescens sp. nov. (holotype CGMCC 2.6457) for the new species, which differs phenotypically from its close relatives V. carnescens, V. tephrensis, and V. victoriae by its ability to grow at 30 °C and on 50 % (w/v) glucose-yeast extract agar.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links