Displaying all 8 publications

Abstract:
Sort:
  1. Chong ZX, Ho WY, Yeap SK, Wang ML, Chien Y, Verusingam ND, et al.
    J Chin Med Assoc, 2021 Jun 01;84(6):563-576.
    PMID: 33883467 DOI: 10.1097/JCMA.0000000000000535
    Lung cancer is one of the most prevalent human cancers, and single-cell RNA sequencing (scRNA-seq) has been widely used to study human lung cancer at the cellular, genetic, and molecular level. Even though there are published reviews, which summarized the applications of scRNA-seq in human cancers like breast cancer, there is lack of a comprehensive review, which could effectively highlight the broad use of scRNA-seq in studying lung cancer. This review, therefore, was aimed to summarize the various applications of scRNA-seq in human lung cancer research based on the findings from different published in vitro, in vivo, and clinical studies. The review would first briefly outline the concept and principle of scRNA-seq, followed by the discussion on the applications of scRNA-seq in studying human lung cancer. Finally, the challenges faced when using scRNA-seq to study human lung cancer would be discussed, and the potential applications and challenges of scRNA-seq to facilitate the development of personalized cancer therapy in the future would be explored.
  2. Rengganaten V, Huang CJ, Wang ML, Chien Y, Tsai PH, Lan YT, et al.
    BMC Cancer, 2023 Nov 10;23(1):1088.
    PMID: 37950151 DOI: 10.1186/s12885-023-11571-1
    BACKGROUND: Cancer stem cells form a rare cell population in tumors that contributes to metastasis, recurrence and chemoresistance in cancer patients. Circular RNAs (circRNAs) are post-transcriptional regulators of gene expression that sponge targeted microRNA (miRNAs) to affect a multitude of downstream cellular processes. We previously showed in an expression profiling study that circZNF800 (hsa_circ_0082096) was up-regulated in cancer stem cell-enriched spheroids derived from colorectal cancer (CRC) cell lines.

    METHODS: Spheroids were generated in suspension spheroidal culture. The ZNF800 mRNA, pluripotency stem cell markers and circZNF800 levels were determined by quantitative RT-PCR. CircZNF800-miRNA interactions were shown in RNA pulldown assays and the miRNA levels determined by stem-loop qRT-PCR. The effects of circZNF800 on cell proliferation were tested by EdU staining followed by flowcytometry. Expression of stem cell markers CD44/CD133, Lgr5 and SOX9 was demonstrated in immunofluorescence microscopy. To manipulate the cellular levels of circZNF800, circZNF800 over-expression was achieved via transfection of in vitro synthesized and circularized circZNF800, and knockdown attained using a CRISPR-Cas13d-circZNF800 vector system. Xenografted nude mice were used to demonstrate effects of circZNF800 over-expression and knockdown on tumor growth in vivo.

    RESULTS: CircZNF800 was shown to be over-expressed in late-stage tumor tissues of CRC patients. Data showed that circZNF800 impeded expression of miR-140-3p, miR-382-5p and miR-579-3p while promoted the mRNA levels of ALK/ACVR1C, FZD3 and WNT5A targeted by the miRNAs, as supported by alignments of seed sequences between the circZNF800-miRNA, and miRNA-mRNA paired interactions. Analysis in CRC cells and biopsied tissues showed that circZNF800 positively regulated the expression of intestinal stem cell, pluripotency and cancer stem cell markers, and promoted CRC cell proliferation, spheroid and colony formation in vitro, all of which are cancer stem cell properties. In xenografted mice, circZNF800 over-expression promoted tumor growth, while circZNF800 knockdown via administration of CRISPR Cas13d-circZNF800 viral particles at the CRC tumor sites impeded tumor growth.

    CONCLUSIONS: CircZNF800 is an oncogenic factor that regulate cancer stem cell properties to lead colorectal tumorigenesis, and may be used as a predictive marker for tumor progression and the CRISPR Cas13d-circZNF800 knockdown strategy for therapeutic intervention of colorectal cancer.

  3. Rengganaten V, Huang CJ, Tsai PH, Wang ML, Yang YP, Lan YT, et al.
    Int J Mol Sci, 2020 Oct 23;21(21).
    PMID: 33114016 DOI: 10.3390/ijms21217864
    Spheroidal cancer cell cultures have been used to enrich cancer stem cells (CSC), which are thought to contribute to important clinical features of tumors. This study aimed to map the regulatory networks driven by circular RNAs (circRNAs) in CSC-enriched colorectal cancer (CRC) spheroid cells. The spheroid cells established from two CRC cell lines acquired stemness properties in pluripotency gene expression and multi-lineage differentiation capacity. Genome-wide sequencing identified 1503 and 636 circRNAs specific to the CRC parental and spheroid cells, respectively. In the CRC spheroids, algorithmic analyses unveiled a core network of mRNAs involved in modulating stemness-associated signaling pathways, driven by a circRNA-microRNA (miRNA)-mRNA axis. The two major circRNAs, hsa_circ_0066631 and hsa_circ_0082096, in this network were significantly up-regulated in expression levels in the spheroid cells. The two circRNAs were predicted to target and were experimentally shown to down-regulate miR-140-3p, miR-224, miR-382, miR-548c-3p and miR-579, confirming circRNA sponging of the targeted miRNAs. Furthermore, the affected miRNAs were demonstrated to inhibit degradation of six mRNA targets, viz. ACVR1C/ALK7, FZD3, IL6ST/GP130, SKIL/SNON, SMAD2 and WNT5, in the CRC spheroid cells. These mRNAs encode proteins that are reported to variously regulate the GP130/Stat, Activin/Nodal, TGF-β/SMAD or Wnt/β-catenin signaling pathways in controlling various aspects of CSC stemness. Using the CRC spheroid cell model, the novel circRNA-miRNA-mRNA axis mapped in this work forms the foundation for the elucidation of the molecular mechanisms of the complex cellular and biochemical processes that determine CSC stemness properties of cancer cells, and possibly for designing therapeutic strategies for CRC treatment by targeting CSC.
  4. Boo L, Yeap SK, Ali NM, Ho WY, Ky H, Satharasinghe DA, et al.
    J Chin Med Assoc, 2019 Nov 15.
    PMID: 31770189 DOI: 10.1097/JCMA.0000000000000226
    BACKGROUND: In vitro 3-dimensional spheroid culture has been widely used as model to enrich CD44CD24 cancer stem cells (CSC) with high ALDH1 activity. Although CD24subpopulation was known to be present in 3D spheroids and may influence cancer drug therapies, its characteristics and CSC properties were not well defined.

    METHODS: In this study, CD24 population from the MCF-7 spheroid was sorted and subjected to spheroid formation test, stem cell markers immunofluorescence, invasion and migration test as well as microRNA expression profiling.

    RESULTS: Sorted MCF-7 CD24 cells from primary spheroids were able to reform its 3D spheroid shape after 7 days in non-adherent culture conditions. In contrast to the primary spheroids, the expression of SOX-2, CD44, CD49f and Nanog were dim in MCF-7 CD24+ cells. Remarkably, MCF-7 CD24 cells were found to show high expression of ALDH1 protein which may have resulted in these cells exhibiting higher resistance against doxorubicin and cisplatin when compared to that of the parental cells. Moreover, microRNA profiling has shown that the absence of cancer stem cell properties were consistent with the downregulation of major cancer stem cells related pathways including Hedgehog, Wnt and MAPK signalling pathways. However, the upregulated pathways such as adherans junctions, focal adhesion and tight junction suggest that CD24+ cells were probably at an epithelial-like state of cell transition.

    CONCLUSION: In conclusion, neglected CD24+ cells in MCF-7 spheroid did not exhibit typical breast CSCs properties. The presence of miRNAs and their analysed pathways suggested that these cells could be a distinct intermediate cell state in breast CSCs.

  5. Verusingam ND, Chen YC, Lin HF, Liu CY, Lee MC, Lu KH, et al.
    J Chin Med Assoc, 2021 03 01;84(3):248-254.
    PMID: 33009209 DOI: 10.1097/JCMA.0000000000000438
    BACKGROUND: Lung cancer contributes to high cancer mortality worldwide with 80% of total cases diagnosed as non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) tyrosine kinase (TK) domain serves as a druggable target in NSCLC patients with exon 19 deletion and L858R mutation. However, patients eventually succumbed to resistance to first- and second-generation EGFR-TK inhibitors through activation of T790M mutation. Third-generation EGFR-TKI, Osimertinib exhibits high efficacy in patients with exon 19 deletion/L858R/T790M mutation but they experienced acquired resistance thereafter. Available treatment options in NSCLC patients remains a challenge due to unknown molecular heterogeneity responsible for acquired resistance to EGFR-TKI. In this study, we aim to generate Osimertinib-resistant (OR) cells from H1975 carrying L858R/T790M double mutation which can be used as a model to elucidate mechanism of resistance.

    METHODS: OR cells were established via stepwise-dose escalation and limiting single-cell dilution method. We then evaluated Osimertinib resistance potential via cell viability assay. Proteins expression related to EGFR-signalling, epithelial to mesenchymal transition (EMT), and autophagy were analyzed via western blot.

    RESULTS: OR cell lines exhibited increased drug resistance potential compared to H1975. Distinguishable mesenchymal-like features were observed in OR cells. Protein expression analysis revealed EGFR-independent signaling involved in the derived OR cells as well as EMT and autophagy activity.

    CONCLUSION: We generated OR cell lines in-vitro as evidenced by increased drug resistance potential, increased mesenchymal features, and enhanced autophagy activity. Development of Osimertinib resistance cells may serve as in-vitro model facilitating discovery of molecular aberration present during acquired mechanism of resistance.

  6. Aldoghachi AF, Loh JK, Wang ML, Yang YP, Chien CS, Teh HX, et al.
    J Chin Med Assoc, 2023 Apr 01;86(4):356-365.
    PMID: 36762931 DOI: 10.1097/JCMA.0000000000000899
    Mesenchymal stem cells (MSCs) are multipotent cells derived from adult human tissues that have the ability to proliferate in vitro and maintain their multipotency, making them attractive cell sources for regenerative medicine. However, MSCs reportedly show limited proliferative capacity with inconsistent therapeutic outcomes due to their heterogeneous nature. On the other hand, induced pluripotent stem cells (iPSC) have emerged as an alternative source for the production of various specialized cell types via their ability to differentiate from all three primary germ layers, leading to applications in regenerative medicine, disease modeling, and drug therapy. Notably, iPSCs can differentiate into MSCs in monolayer, commonly referred to as induced mesenchymal stem cells (iMSCs). These cells show superior therapeutic qualities compared with adult MSCs as the applications of the latter are restricted by passage number and autoimmune rejection when applied in tissue regeneration trials. Furthermore, increasing evidence shows that the therapeutic properties of stem cells are a consequence of the paracrine effects mediated by their secretome such as from exosomes, a type of extracellular vesicle secreted by most cell types. Several studies that investigated the potential of exosomes in regenerative medicine and therapy have revealed promising results. Therefore, this review focuses on the recent findings of exosomes secreted from iMSCs as a potential noncell-based therapy.
  7. Chien CS, Chien Y, Lin YY, Tsai PH, Chou SJ, Yarmishyn AA, et al.
    Front Cell Dev Biol, 2021;9:634190.
    PMID: 34422789 DOI: 10.3389/fcell.2021.634190
    Non-viral gene delivery holds promises for treating inherited diseases. However, the limited cloning capacity of plasmids may hinder the co-delivery of distinct genes to the transfected cells. Previously, the conjugation of maleimide-functionalized polyurethane grafted with small molecular weight polyethylenimine (PU-PEI600-Mal) using 1,6-hexanedithiol (HDT) could promote the co-delivery and extensive co-expression of two different plasmids in target cells. Herein, we designed HDT-conjugated PU-PEI600-Mal for the simultaneous delivery of CRISPR/Cas9 components to achieve efficient gene correction in the induced pluripotent stem cell (iPSC)-derived model of Fabry cardiomyopathy (FC) harboring GLA IVS4 + 919 G > A mutation. This FC in vitro model recapitulated several clinical FC features, including cardiomyocyte hypertrophy and lysosomal globotriaosylceramide (Gb3) deposition. As evidenced by the expression of two reporter genes, GFP and mCherry, the addition of HDT conjugated two distinct PU-PEI600-Mal/DNA complexes and promoted the co-delivery of sgRNA/Cas9 and homology-directed repair DNA template into target cells to achieve an effective gene correction of IVS4 + 919 G > A mutation. PU-PEI600-Mal/DNA with or without HDT-mediated conjugation consistently showed neither the cytotoxicity nor an adverse effect on cardiac induction of transfected FC-iPSCs. After the gene correction and cardiac induction, disease features, including cardiomyocyte hypertrophy, the mis-regulated gene expressions, and Gb3 deposition, were remarkably rescued in the FC-iPSC-differentiated cardiomyocytes. Collectively, HDT-conjugated PU-PEI600-Mal-mediated dual DNA transfection system can be an ideal approach to improve the concurrent transfection of non-viral-based gene editing system in inherited diseases with specific mutations.
  8. Ahmad Mulyadi Lai HI, Chou SJ, Chien Y, Tsai PH, Chien CS, Hsu CC, et al.
    Int J Mol Sci, 2021 Jan 28;22(3).
    PMID: 33525682 DOI: 10.3390/ijms22031320
    Angiotensin-converting enzyme 2 (ACE2) was identified as the main host cell receptor for the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its subsequent infection. In some coronavirus disease 2019 (COVID-19) patients, it has been reported that the nervous tissues and the eyes were also affected. However, evidence supporting that the retina is a target tissue for SARS-CoV-2 infection is still lacking. This present study aimed to investigate whether ACE2 expression plays a role in human retinal neurons during SARS-CoV-2 infection. Human induced pluripotent stem cell (hiPSC)-derived retinal organoids and monolayer cultures derived from dissociated retinal organoids were generated. To validate the potential entry of SARS-CoV-2 infection in the retina, we showed that hiPSC-derived retinal organoids and monolayer cultures endogenously express ACE2 and transmembrane serine protease 2 (TMPRSS2) on the mRNA level. Immunofluorescence staining confirmed the protein expression of ACE2 and TMPRSS2 in retinal organoids and monolayer cultures. Furthermore, using the SARS-CoV-2 pseudovirus spike protein with GFP expression system, we found that retinal organoids and monolayer cultures can potentially be infected by the SARS-CoV-2 pseudovirus. Collectively, our findings highlighted the potential of iPSC-derived retinal organoids as the models for ACE2 receptor-based SARS-CoV-2 infection.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links