Displaying all 2 publications

Abstract:
Sort:
  1. Zhang WB, Wang CF, Yu Y, Liu S, Hu LH, Soh HY, et al.
    PMID: 39553818 DOI: 10.1177/19433875241272441
    STUDY DESIGN: Prospective and retrospective studies.

    OBJECTIVE: The aim of this study was to evaluate the clinical effects and accuracy of three-dimensionally (3D)-printed patient-specific surgical plates used for mandibular defect reconstruction.

    METHODS: This study included patients who underwent mandibular defect reconstruction with vascularized autogenous bone grafts between January 2012 and August 2021. They were divided into experimental (fixation with 3D-printed surgical plates) and control (fixation with conventional surgical plates) groups. Flap survival rate, postoperative complications and patient self-evaluated facial appearance were compared. Mandibular reconstruction accuracy evaluation included postoperative position deviation of the whole mandible, transplanted bone graft, lower mandibular border, mandibular condyle, and mandibular angle on the reconstructed side compared to baseline.

    RESULTS: This study included 20 patients (14 males, six females; age, 39.45 ± 11.69 years), ten each in the experimental and control groups. The mean follow-up was 16 ± 22.05 (range, 6-99) months. All procedures were successful, no plate-related complications (breakage, loosening, or exposure of the surgical plates) were reported, and all patients were satisfied. The groups were statistically similar in th e position deviation of the whole mandible, transplanted bone graft, mandibular condyle, and mandibular angle, but the position and morphology of the lower mandibular border on the reconstructed side in the experimental group were better than those in the control group (P = 0.016).

    CONCLUSIONS: 3D-printed patient-specific surgical plates could be applied in mandibular reconstruction safely and effectively, simplifying the surgical procedure, shortening the preoperative preparation times, achieving satisfactory outcomes, and improving the clinical effects and accuracy of individualized mandibular reconstruction.

  2. Xia NB, Lu Y, Zhao PF, Wang CF, Li YY, Tan L, et al.
    Trop Biomed, 2020 Jun 01;37(2):489-498.
    PMID: 33612818
    Toxoplasma gondii, a ubiquitous pathogen that infects nearly all warm-blooded animals and humans, can cause severe complications to the infected people and animals as well as serious economic losses and social problems. Here, one local strain (TgPIG-WH1) was isolated from an aborted pig fetus, and the genotype of this strain was identified as ToxoDB #3 by the PCR RFLP typing method using 10 molecular markers (SAG1, SAG2, alternative SAG2, SAG3, BTUB, GRA6, L358, PK1, C22-8, C29-2 and Apico). A comparison of the virulence of this isolate with other strains in both mice and piglets showed that TgPIG-WH1 was less virulent than type 1 strain RH and type 2 strain ME49 in mice, and caused similar symptoms to those of ME49 such as fever in piglets. Additionally, in piglet infection with both strains, the TgPIG-WH1 caused a higher IgG response and more severe pathological damages than ME49. Furthermore, TgPIG-WH1 caused one death in the 5 infected piglets, whereas ME49 did not, suggesting the higher virulence of TgPIG-WH1 than ME49 during piglet infection. Experimental infections indicate that the virulence of TgPIG-WH1 relative to ME49 is weaker in mice, but higher in pigs. This is probably the first report regarding a ToxoDB #3 strain from pigs in Hubei, China. These data will facilitate the understanding of genetic diversity of Toxoplasma strains in China as well as the prevention and control of porcine toxoplasmosis in the local region.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links