Displaying all 2 publications

Abstract:
Sort:
  1. Kusamoto A, Harada M, Azhary JMK, Kunitomi C, Nose E, Koike H, et al.
    FASEB J, 2021 11;35(11):e21971.
    PMID: 34653284 DOI: 10.1096/fj.202101051R
    It has been recently recognized that prenatal androgen exposure is involved in the development of polycystic ovary syndrome (PCOS) in adulthood. In addition, the gut microbiome in adult patients and rodents with PCOS differs from that of healthy individuals. Moreover, recent studies have suggested that the gut microbiome may play a causative role in the pathogenesis of PCOS. We wondered whether prenatal androgen exposure induces gut microbial dysbiosis early in life and is associated with the development of PCOS in later life. To test this hypothesis, we studied the development of PCOS-like phenotypes in prenatally androgenized (PNA) female mice and compared the gut microbiome of PNA and control offspring from 4 to 16 weeks of age. PNA offspring showed a reproductive phenotype from 6 weeks and a metabolic phenotype from 12 weeks of age. The α-diversity of the gut microbiome of the PNA group was higher at 8 weeks and lower at 12 and 16 weeks of age, and the β-diversity differed from control at 8 weeks. However, a significant difference in the composition of gut microbiome between the PNA and control groups was already apparent at 4 weeks. Allobaculum and Roseburia were less abundant in PNA offspring, and may therefore be targets for future interventional studies. In conclusion, abnormalities in the gut microbiome appear as early as or even before PCOS-like phenotypes develop in PNA mice. Thus, the gut microbiome in early life is a potential target for the prevention of PCOS in later life.
  2. Kusamoto A, Harada M, Minemura A, Matsumoto A, Oka K, Takahashi M, et al.
    Front Cell Dev Biol, 2024;12:1365624.
    PMID: 38590777 DOI: 10.3389/fcell.2024.1365624
    The gut microbiome is implicated in the pathogenesis of polycystic ovary syndrome (PCOS), and prenatal androgen exposure is involved in the development of PCOS in later life. Our previous study of a mouse model of PCOS induced by prenatal dihydrotestosterone (DHT) exposure showed that the reproductive phenotype of PCOS appears from puberty, followed by the appearance of the metabolic phenotype after young adulthood, while changes in the gut microbiota was already apparent before puberty. To determine whether the prenatal or postnatal nurturing environment primarily contributes to these changes that characterize prenatally androgenized (PNA) offspring, we used a cross-fostering model to evaluate the effects of changes in the postnatal early-life environment of PNA offspring on the development of PCOS-like phenotypes and alterations in the gut microbiota in later life. Female PNA offspring fostered by normal dams (exposed to an abnormal prenatal environment only, fostered PNA) exhibited less marked PCOS-like phenotypes than PNA offspring, especially with respect to the metabolic phenotype. The gut microbiota of the fostered PNA offspring was similar to that of controls before adolescence, but differences between the fostered PNA and control groups became apparent after young adulthood. In conclusion, both prenatal androgen exposure and the postnatal early-life environment created by the DHT injection of mothers contribute to the development of PCOS-like phenotypes and the alterations in the gut microbiota that characterize PNA offspring. Thus, both the pre- and postnatal environments represent targets for the prevention of PCOS and the associated alteration in the gut microbiota in later life.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links