Displaying all 4 publications

Abstract:
Sort:
  1. Osman A, Wan Chuan T, Ab Rahman J, Via G, Tavazzi G
    Eur J Emerg Med, 2018 Oct;25(5):322-327.
    PMID: 28509710 DOI: 10.1097/MEJ.0000000000000471
    OBJECTIVE: The aim of this study was to evaluate a novel pericardiocentesis technique using an in-plane parasternal medial-to-lateral approach with the use of a high-frequency probe in patients with cardiac tamponade.

    BACKGROUND: Echocardiography is pivotal in the diagnosis of pericardial effusion and tamponade physiology. Ultrasound guidance for pericardiocentesis is currently considered the standard of care. Several approaches have been described recently, which differ mainly on the site of puncture (subxiphoid, apical, or parasternal). Although they share the use of low-frequency probes, there is absence of complete control of needle trajectory and real-time needle visualization. An in-plane and real-time technique has only been described anecdotally.

    METHODS AND RESULTS: A retrospective analysis of 11 patients (63% men, mean age: 37.7±21.2 years) presenting with cardiac tamponade admitted to the tertiary-care emergency department and treated with parasternal medial-to-lateral in-plane pericardiocentesis was carried out. The underlying causes of cardiac tamponade were different among the population. All the pericardiocentesis were successfully performed in the emergency department, without complications, relieving the hemodynamic instability. The mean time taken to perform the eight-step procedure was 309±76.4 s, with no procedure-related complications.

    CONCLUSION: The parasternal medial-to-lateral in-plane pericardiocentesis is a new technique theoretically free of complications and it enables real-time monitoring of needle trajectory. For the first time, a pericardiocentesis approach with a medial-to-lateral needle trajectory and real-time, in-plane, needle visualization was performed in a tamponade patient population.

  2. Osman A, Via G, Sallehuddin RM, Ahmad AH, Fei SK, Azil A, et al.
    Eur Heart J Acute Cardiovasc Care, 2021 Dec 18;10(10):1103-1111.
    PMID: 34632507 DOI: 10.1093/ehjacc/zuab078
    AIMS : Non-invasive ventilation represents an established treatment for acute cardiogenic pulmonary oedema (ACPO) although no data regarding the best ventilatory strategy are available. We aimed to compare the effectiveness of helmet CPAP (hCPAP) and high flow nasal cannula (HFNC) in the early treatment of ACPO.

    METHODS AND RESULTS : Single-centre randomized controlled trial of patients admitted to the emergency department due to ACPO with hypoxemia and dyspnoea on face mask oxygen therapy. Patients were randomly assigned with a 1:1 ratio to receive hCPAP or HFNC and FiO2 set to achieve an arterial oxygen saturation >94%. The primary outcome was a reduction in respiratory rate; secondary outcomes included changes in heart rate, PaO2/FiO2 ratio, Heart rate, Acidosis, Consciousness, Oxygenation, and Respiratory rate (HACOR) score, Dyspnoea Scale, and intubation rate. Data were collected before hCPAP/HFNC placement and after 1 h of treatment. Amongst 188 patients randomized, hCPAP was more effective than HFNC in reducing respiratory rate [-12 (95% CI; 11-13) vs. -9 (95% CI; 8-10), P 

  3. Adi O, Via G, Salleh SH, Chuan TW, Rahman JA, Muhammad NAN, et al.
    Am J Emerg Med, 2021 Nov;49:385-392.
    PMID: 34271286 DOI: 10.1016/j.ajem.2021.06.031
    STUDY OBJECTIVE: To determine whether non-invasive ventilation (NIV) delivered by helmet continuous positive airway pressure (hCPAP) is non-inferior to facemask continuous positive airway pressure (fCPAP) in patients with acute respiratory failure in the emergency department (ED).

    METHODS: Non-inferiority randomized, clinical trial involving patients presenting with acute respiratory failure conducted in the ED of a local hospital. Participants were randomly allocated to receive either hCPAP or fCPAP as per the trial protocol. The primary endpoint was respiratory rate reduction. Secondary endpoints included discomfort, improvement in Dyspnea and Likert scales, heart rate reduction, arterial blood oxygenation, partial pressure of carbon dioxide (PaCO2), dryness of mucosa and intubation rate.

    RESULTS: 224 patients were included and randomized (113 patients to hCPAP, 111 to fCPAP). Both techniques reduced respiratory rate (hCPAP: from 33.56 ± 3.07 to 25.43 ± 3.11 bpm and fCPAP: from 33.46 ± 3.35 to 27.01 ± 3.19 bpm), heart rate (hCPAP: from 114.76 ± 15.5 to 96.17 ± 16.50 bpm and fCPAP: from 115.07 ± 14.13 to 101.19 ± 16.92 bpm), and improved dyspnea measured by both the Visual Analogue Scale (hCPAP: from 16.36 ± 12.13 to 83.72 ± 12.91 and fCPAP: from 16.01 ± 11.76 to 76.62 ± 13.91) and the Likert scale. Both CPAP techniques improved arterial oxygenation (PaO2 from 67.72 ± 8.06 mmHg to 166.38 ± 30.17 mmHg in hCPAP and 68.99 ± 7.68 mmHg to 184.49 ± 36.38 mmHg in fCPAP) and the PaO2:FiO2 (Partial pressure of arterial oxygen: Fraction of inspired oxygen) ratio from 113.6 ± 13.4 to 273.4 ± 49.5 in hCPAP and 115.0 ± 12.9 to 307.7 ± 60.9 in fCPAP. The intubation rate was lower with hCPAP (4.4% for hCPAP versus 18% for fCPAP, absolute difference -13.6%, p = 0.003). Discomfort and dryness of mucosa were also lower with hCPAP.

    CONCLUSION: In patients presenting to the ED with acute cardiogenic pulmonary edema or decompensated COPD, hCPAP was non-inferior to fCPAP and resulted in greater comfort levels and lower intubation rate.

  4. Hussain A, Via G, Melniker L, Goffi A, Tavazzi G, Neri L, et al.
    Crit Care, 2020 12 24;24(1):702.
    PMID: 33357240 DOI: 10.1186/s13054-020-03369-5
    COVID-19 has caused great devastation in the past year. Multi-organ point-of-care ultrasound (PoCUS) including lung ultrasound (LUS) and focused cardiac ultrasound (FoCUS) as a clinical adjunct has played a significant role in triaging, diagnosis and medical management of COVID-19 patients. The expert panel from 27 countries and 6 continents with considerable experience of direct application of PoCUS on COVID-19 patients presents evidence-based consensus using GRADE methodology for the quality of evidence and an expedited, modified-Delphi process for the strength of expert consensus. The use of ultrasound is suggested in many clinical situations related to respiratory, cardiovascular and thromboembolic aspects of COVID-19, comparing well with other imaging modalities. The limitations due to insufficient data are highlighted as opportunities for future research.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links