Biosynthesis of nanoparticles has now become a novel trend in addressing some of the environmental issues by adopting eco-friendly approaches in manoeuvring nanoparticles for various applications. Plants and micro-organisms have been the potential sources of the biological mode of synthesizing nanoparticles as part of their bioremediation process. This principle has been harnessed for synthesizing nanoparticles either extra or intracellularly. In this line of phyto-mediated synthesis, eucalyptus buds have been used for synthesizing gold nanoparticles (Au NPs) under optimized laboratory conditions. The UV-visible spectrum of the Au NPs showed typical surface plasmon resonance at 550 nm (λmax) with a crystalline phase measuring <100 nm in size and monodispersed as revealed from XRD, FESEM, and AFM analyses. The biological role of phytochemical concoction in reducing and stabilizing the Au NPs was clearly identified from FT-IR studies. The antimicrobial effect of the Au NPs against clinically important pathogens viz. Staphylococcus sp., Pseudomonas sp., Bacillus sp. and E. coli determined using the disk diffusion method showed no significant antibacterial effect at all concentrations. Cytotoxicity studies were carried using Vero and HEp-2 cell lines and the 50% inhibition concentration (IC50) was determined to be 1.25 mg and 0.625 mg/mL respectively. Au NPs with potential antimicrobial and anti-proliferative effects could found profound implications in the field of nanomedicine once the toxicity in vivo has been investigated.
Nanostructure materials are of interest in last few decades due to their unique size-dependent physio-chemical properties. In this paper, zinc oxide (ZnO) and barium doped ZnO nanodisks (NDs) were synthesized using sonochemical method and characterized by various techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), UV-vis absorption and dielectric measurements. The XRD and FTIR studies confirm the crystalline nature of ZnO NDs, and the average crystallite size was found to be ~25 nm for pure ZnO and ~22 nm for Ba doped ZnO NDs. SEM study confirmed the spherical shaped ZnO NDs with average sizes in the range of 20-30 nm. The maximum absorbance was obtained in the 200-500 nm regions with a prominent peak absorbance were observed by UV-vis spectra. The corresponding band gap for ZnO NDs and Ba doped ZnO NDs were calculated using Tauc's plot and was found to be 3.12 and 3.04, respectively. The conductivity and dielectric measurements as a function of frequency have been studied.