Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Chah, C.K., Ravoof, T.B.S.A., Veerakumarasivam, A.
    MyJurnal
    A novel nitrogen-sulphur macrocyclic Schiff base, 4,11,20,27-tetrathioxo3,12,19,28-tetrathia-5,6,9,10,21,22,25,26-octaazatricyclo[28.2.2.214,17]hexatriaconta 1(33),6,8,14(36),15,17(35),22,24,30(34),31-decaene-2,13,18,29-tetraone (TGSB) derived from terephthaloyl-bis-dithiocarbazate (TDTC) and glyoxal (ethane-1,2-dione) is synthesised via condensation. Metal complexes are formed by reacting the Schiff base with various metal salts such as Ru(III), Mo(V), Cd(II), Zn(II) and Cu(II). The complexes are expected to have a general formula of M2L or M3L with a square planar or square pyramidal geometry. These compounds were characterised by various physicochemical and spectroscopic techniques. From the data, it is concluded that the azomethine nitrogen atom and the thiolate sulphur atom from the ligand are bonded to the metal ion. In the IR spectra of the complexes, the presence of the C=N band in the region of 1600 cm-1 indicates the successful formation of the Schiff base. The structures of the Schiff base and metal complexes are confirmed via FT-IR, GC-MS and NMR spectroscopic analysis. The magnetic susceptibility measurements, electronic spectral data and molar conductivity analysis support the desired geometry of the complexes. The Schiff base and its metal complexes are evaluated for their biological activities against the invasive human bladder carcinoma cell line (EJ-28) and the minimuminvasive human bladder carcinoma cell line (RT-112). The RuTGSB and CdTGSB complexes showed selective activity against RT-112.
  2. Thalayasingam M, Veerakumarasivam A, Kulanthayan S, Khairuddin F, Cheah IG
    Injury, 2012 Dec;43(12):2083-7.
    PMID: 22424957 DOI: 10.1016/j.injury.2012.02.010
    Identifying the differences between infants with non-accidental head injuries (NAHI) and accidental head injuries (AHI) may help alert clinicians to recognize markers of abuse. A retrospective review of infants <1 year of age admitted to a tertiary referral centre in Malaysia over a two year period with a diagnosis of head injury or abnormal computed tomography head scans was conducted to identify the clinical features pointing towards a diagnosis of NAHI by comparing the socio-demographics, presenting complaints, clinical features and the extent of hospital investigations carried out. NAHI infants were more likely to be symptomatic, under a non-related caregiver's supervision, and presented with inconsistent or no known mechanism of injury. Subdural haemorrhages were more common in NAHI infants. The history, mechanism of injury, presenting signs and symptoms as well as the nature of the injuries sustained are all valuable clues as to whether a head injury sustained during infancy is likely to be accidental or not.
  3. Zamanian M, Veerakumarasivam A, Abdullah S, Rosli R
    Pathol Oncol Res, 2013 Apr;19(2):149-54.
    PMID: 23392843 DOI: 10.1007/s12253-012-9600-2
    Calreticulin (CRT) as a multi-functional endoplasmic reticulum protein is involved in a spectrum of cellular processes which ranges from calcium homeostasis and chaperoning to cell adhesion and finally malignant formation and progression. Previous studies have shown a contributing role for CRT in a range of different cancers. This present review will focus on the possible roles of CRT in the progression of malignant proliferation and the mechanisms involved in its contribution to cancer invasion.
  4. Chin FW, Chan SC, Veerakumarasivam A
    Diagnostics (Basel), 2023 Aug 10;13(16).
    PMID: 37627900 DOI: 10.3390/diagnostics13162641
    Homeobox genes serve as master regulatory transcription factors that regulate gene expression during embryogenesis. A homeobox gene may have either tumor-promoting or tumor-suppressive properties depending on the specific organ or cell lineage where it is expressed. The dysregulation of homeobox genes has been reported in various human cancers, including bladder cancer. The dysregulated expression of homeobox genes has been associated with bladder cancer clinical outcomes. Although bladder cancer has high risk of tumor recurrence and progression, it is highly challenging for clinicians to accurately predict the risk of tumor recurrence and progression at the initial point of diagnosis. Cystoscopy is the routine surveillance method used to detect tumor recurrence. However, the procedure causes significant discomfort and pain that results in poor surveillance follow-up amongst patients. Therefore, the development of reliable non-invasive biomarkers for the early detection and monitoring of bladder cancer is crucial. This review provides a comprehensive overview of the diagnostic and prognostic potential of homeobox gene expression dysregulation in bladder cancer.
  5. Ngai SC, Rosli R, Nordin N, Veerakumarasivam A, Abdullah S
    Gene, 2012 May 1;498(2):231-6.
    PMID: 22366305 DOI: 10.1016/j.gene.2012.01.071
    Lentivirus (LV) encoding woodchuck posttranscriptional regulatory element (WPRE) and central polypurine tract (cPPT) driven by CMV promoter have been proven to act synergistically to increase both transduction efficiency and gene expression. However, the inclusion of WPRE and cPPT in a lentiviral construct may pose safety risks when administered to human. A simple lentiviral construct driven by an alternative promoter with proven extended duration of gene expression without the two regulatory elements would be free from the risks. In a non-viral gene delivery context, gene expression driven by human polybiquitin C (UbC) promoter resulted in higher and more persistent expression in mouse as compared to cytomegalovirus (CMV) promoter. In this study, we measured the efficiency and persistency of green fluorescent protein (GFP) reporter gene expression in cells transduced with LV driven by UbC (LV/UbC/GFP) devoid of the WPRE and cPPT in comparison to the established LV construct encoding WPRE and cPPT, driven by CMV promoter (LV/CMV/GFP). However, we found that LV/UbC/GFP was inferior to LV/CMV/GFP in many aspects: (i) the titer of virus produced; (ii) the levels of reporter gene expression when MOI value was standardized; and (iii) the transduction efficiency in different cell types. The duration of reporter gene expression in selected cell lines was also determined. While the GFP expression in cells transduced with LV/CMV/GFP persisted throughout the experimental period of 14 days, expression in cells transduced with LV/UbC/GFP declined by day 2 post-transduction. In summary, the LV driven by the UbC promoter without the WPRE and cPPT does not exhibit enhanced or durable transgene expression.
  6. Nordin N, Lai MI, Veerakumarasivam A, Ramasamy R, Abdullah S, Wendy-Yeo WY, et al.
    Med J Malaysia, 2011 Mar;66(1):4-9.
    PMID: 23765134 MyJurnal
    The development of induced pluripotent stem cells (iPSCs) has been met with much enthusiasm and hailed as a breakthrough discovery by the scientific and research communities amidst the divisive and ongoing debates surrounding human embryonic stem cells (hESC) research. The discovery reveals the fact that embryonic pluripotency can be generated from adult somatic cells by the induction of appropriate transcriptional factor genes essential for maintaining the pluripotency. They provide an alternative source for pluripotent stem cells, thus representing a powerful new research tool besides their potential application in the field of regenerative medicine. In this review, the historical background of iPSCs generation will be discussed together with their properties and characteristics as well as their potential therapeutic applications.
  7. Mohd Ariffin K, Abd Ghani F, Hussin H, Md Said S, Yunus R, Veerakumarasivam A, et al.
    Malays J Pathol, 2021 Apr;43(1):49-54.
    PMID: 33903305
    INTRODUCTION: Hedgehog (HH) pathway is an important signalling cascade for growth and patterning during embryonic development. Constitutive activation of Hedgehog pathway can be found in various types of malignancies including medulloblastoma, basal cell carcinoma, gastrointestinal, breast, pancreatic, prostate cancer and leukaemia. Little is known about the expression and role of Hedgehog signalling in bladder cancer.

    MATERIALS AND METHODS: The purpose of this study was to investigate the immunohistochemical expression of SMO in 112 bladder cancer cases and determine their association with demographic and clinicopathological parameters. Bladder cancer tissues were obtained from the Hospital Kuala Lumpur.

    RESULTS: SMO was expressed in the cytoplasm of all cases of bladder cancer. 6 cases (5.4%) showed low expression, while 106 cases (94.6%) showed high expression. Positive expression of SMO protein was correlated with a few variables which include grade and stage of tumour, lymph node metastasis and distant metastasis. SMO expression showed statistically significant association with higher grade (p=0.001) and higher stage (p=0.042) of bladder cancer. SMO expression also showed borderline association with lymph node metastasis (p=0.056).

    CONCLUSION: These findings indicate that SMO expression may be a poor prognostic marker in bladder cancer.

  8. Kumar SR, Patil PG, Choy CS, Veerakumarasivam A
    Indian J Dent Res, 2020 5 22;31(2):197-202.
    PMID: 32436897 DOI: 10.4103/ijdr.IJDR_553_17
    Background: The location of the inferior alveolar nerve (IAN) is generally constant in fully grown mandibles. If we know its average distance from the lower border of the mandible, available bone length from the crest of the edentulous ridge can be estimated by physical measurement of the whole length of mandible in that area. This study aimed to measure the superio-inferior distance of the inferior alveolar nerve (SIDIAN) from the base of the mandible in posterior regions on the right and left side based on cone-beam-computed tomography (CBCT) scans and to evaluate gender and ethnicity-related variations in the Malaysian population.

    Materials and Methods: A total of 100 CBCT-Digital Imaging and Communications in Medicine files of the patients of 3 ethnic populations (Malay, Chinese and Indian) between the ages of 18 and 80 years were selected for the study. The files were imported onto the iCAT software. The measurements of the SIDIAN to the lower border of the mandible in molar regions were done on both sides. The data was analysed using t-test, one-way analysis of variance test, and correlation coefficient test via the SPSS software.

    Results: Statistically significant positive correlations were identified between the SIDIAN from the lower border of the mandible in the first and second molar regions within the same side as well as between both sides of the mandible (r ≈ 0.8). There were no statistically significant differences between genders. However, there were statistically significant differences on both molar regions and on both sides in all three ethnic groups (P < 0.05). In general, the SIDIAN from the lower border of the mandible was greatest amongst Chinese and smallest amongst Indians.

    Conclusions: The strong positive correlations on both sides of the mandible indicate the presence of symmetry. Ethnicity-related variations exist in terms of the location of the IAN in the mandible.

  9. Yong SJ, Veerakumarasivam A, Lim WL, Chew J
    ACS Chem Neurosci, 2023 Mar 30.
    PMID: 36995304 DOI: 10.1021/acschemneuro.2c00679
    Recent advancements in lactoferrin research have uncovered that lactoferrin does function not only as an antimicrobial protein but also as an immunomodulatory, anticancer, and neuroprotective agent. Focusing on neuroprotection, this literature review delineates how lactoferrin interacts in the brain, specifically its neuroprotective effects and mechanisms against Alzheimer's and Parkinson's diseases (AD and PD), the two most common neurodegenerative diseases. The neuroprotective pathways involving surface receptors (heparan sulfate proteoglycan (HSPG) and lactoferrin receptor (LfR)), signaling pathways (extracellular regulated protein kinase-cAMP response element-binding protein (ERK-CREB) and phosphoinositide 3-kinase/Akt (PI3K/Akt)), and effector proteins (A disintegrin and metalloprotease10 (ADAM10) and hypoxia-inducible factor 1α (HIF-1α)) in cortical/hippocampal and dopaminergic neurons are described. These cellular effects of lactoferrin are likely responsible for attenuating cognitive and motor deficits, amyloid-β and α-synuclein accumulation, and neurodegeneration in animal and cellular models of AD and PD. This review also discusses the inconsistent findings related to the neuroprotective effects of lactoferrin against AD. Overall, this review contributes to the existing literature by clarifying the potential neuroprotective effects and mechanisms of lactoferrin in the context of AD and PD neuropathology.
  10. Amini R, Azizi Jalilian F, Veerakumarasivam A, Abdullah S, Abdulamir AS, Nadali F, et al.
    Biomed Res Int, 2013;2013:752603.
    PMID: 23509773 DOI: 10.1155/2013/752603
    Vascular endothelial growth factor (VEGF) is a potent angiogenic factor involved in angiogenesis-mediated progression of acute myeloid leukemia (AML). Studies have reported the role of soluble form of fms-like tyrosine kinase (sFlT-1) delivery as an antitumor agent by inhibiting VEGF. This study investigates the outcome of delivery of a VEGF165 antagonist, soluble vascular endothelial growth factor receptor, namely sFLT-1, mediating lipofectamine 2000 in acute myeloid leukemic cells. A recombinant plasmid expressing sFLT-1 was constructed and transfected into the K562 and HL60 cells using lipofectamine 2000 transfection reagent. sFLT-1 expression/secretion in pVAX-sFLT-1 transfected cells was verified by RT-PCR and western blot. MTS assay was carried out to evaluate the effect of sFLT-1 on human umbilical vein endothelial cells and K562 and HL60 cells in vitro. Treatment with pVAX-sFLT-1 showed no association between sFLT-1 and proliferation of infected K562 and HL60 cells, while it demonstrated a significant inhibitory impact on the proliferation of HUVECs. The results of the current study imply that the combination of nonviral gene carrier and sFLT-1 possesses the potential to provide efficient tool for the antiangiogenic gene therapy of AML.
  11. Amini R, Jalilian FA, Abdullah S, Veerakumarasivam A, Hosseinkhani H, Abdulamir AS, et al.
    Appl Biochem Biotechnol, 2013 Jun;170(4):841-53.
    PMID: 23615733 DOI: 10.1007/s12010-013-0224-0
    Leukemic cells are hard-to-transfect cell lines. Many transfection reagents which can provide high gene transfer efficiency in common adherent cell lines are not effective to transfect established blood cell lines or primary leukemic cells. This study aims to examine a new class of cationic polymer non-viral vector, PEGylated-dextran-spermine (PEG-D-SPM), to determine its ability to transfect the leukemic cells. Here, the optimal conditions of the complex preparation (PEG-D-SPM/plasmid DNA (pDNA)) were examined. Different weight-mixing (w/w) ratios of PEG-D-SPM/pDNA complex were prepared to obtain an ideal mixing ratio to protect encapsulated pDNA from DNase degradation and to determine the optimal transfection efficiency of the complex. Strong complexation between polymer and pDNA in agarose gel electrophoresis and protection of pDNA from DNase were detected at ratios from 25 to 15. Highest gene expression was detected at w/w ratio of 18 in HL60 and K562 cells. However, gene expression from both leukemic cell lines was lower than the control MCF-7 cells. The cytotoxicity of PEG-D-SPM/pDNA complex at the most optimal mixing ratios was tested in HL60 and K562 cells using MTS assay and the results showed that the PEG-D-SPM/pDNA complex had no cytotoxic effect on these cell lines. Spherical shape and nano-nature of PEG-D-SPM/pDNA complex at ratio 18 was observed using transmission electron microscopy. As PEG-D-SPM showed modest transfection efficiency in the leukemic cell lines, we conclude that further work is needed to improve the delivery efficiency of the PEG-D-SPM.
  12. Lai MI, Wendy-Yeo WY, Ramasamy R, Nordin N, Rosli R, Veerakumarasivam A, et al.
    J Assist Reprod Genet, 2011 Apr;28(4):291-301.
    PMID: 21384252 DOI: 10.1007/s10815-011-9552-6
    Direct reprogramming of somatic cells into induced pluripotent stem (iPS) cells has emerged as an invaluable method for generating patient-specific stem cells of any lineage without the use of embryonic materials. Following the first reported generation of iPS cells from murine fibroblasts using retroviral transduction of a defined set of transcription factors, various new strategies have been developed to improve and refine the reprogramming technology. Recent developments provide optimism that the generation of safe iPS cells without any genomic modification could be derived in the near future for the use in clinical settings. This review summarizes current and evolving strategies in the generation of iPS cells, including types of somatic cells for reprogramming, variations of reprogramming genes, reprogramming methods, and how the advancement iPS cells technology can lead to the future success of reproductive medicine.
  13. Vellasamy S, Tong CK, Azhar NA, Kodiappan R, Chan SC, Veerakumarasivam A, et al.
    Cytotherapy, 2016 10;18(10):1270-83.
    PMID: 27543068 DOI: 10.1016/j.jcyt.2016.06.017
    BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) have been identified as pan-immunosuppressant in various in vitro and in vivo inflammatory models. Although the immunosuppressive activity of MSCs has been explored in various contexts, the precise molecular signaling pathways that govern inhibitory functions remain poorly elucidated.

    METHODS: By using a microarray-based global gene expression profiling system, this study aimed to decipher the underlying molecular pathways that may mediate the immunosuppressive activity of umbilical cord-derived MSCs (UC-MSCs) on activated T cells.

    RESULTS: In the presence of UC-MSCs, the proliferation of activated T cells was suppressed in a dose-depended manner by cell-to-cell contact mode via an active cell-cycle arrest at the G0/G1 phase of the cell cycle. The microarray analysis revealed that particularly, IFNG, CXCL9, IL2, IL2RA and CCND3 genes were down-regulated, whereas IL11, VSIG4, GFA1, TIMP3 and BBC3 genes were up-regulated by UC-MSCs. The dysregulated gene clusters associated with immune-response-related ontologies, namely, lymphocyte proliferation or activation, apoptosis and cell cycle, were further analyzed.

    CONCLUSIONS: Among the nine canonical pathways identified, three pathways (namely T-helper cell differentiation, cyclins and cell cycle regulation, and gap/tight junction signalling pathways) were highly enriched with these dysregulated genes. The pathways represent putative molecular pathways through which UC-MSCs elicit immunosuppressive activity toward activated T cells. This study provides a global snapshot of gene networks and pathways that contribute to the ability of UC-MSCs to suppress activated T cells.

  14. Md Akhir MKA, Hussin H, Veerakumarasivam A, Choy CS, Abdullah MA, Abd Ghani F
    Malays J Pathol, 2017 Dec;39(3):227-234.
    PMID: 29279584 MyJurnal
    Urothelial carcinoma is a common malignant neoplasm that has a poor prognosis and a high frequency of recurrence and metastasis. Constant disease surveillance with periodic and long term cystoscopy examination is necessary for management of the disease. However, the monitoring and therapy regimen is expensive, incurring a massive burden to patients and the government. Therefore, the development of specific biomarkers for urothelial carcinoma at an early stage and recurrence detection becomes a priority. Homeobox genes are a family of genes that are involved in tumourigenesis. They might be potential prognostic markers for urothelial carcinoma. The study investigated the expression pattern of NANOG which is one of a homeobox gene in different stages and grades of urothelial carcinoma. NANOG expressions were also correlated with patient demographic factors and clinicopathological parameters. The expression of NANOG in 100 formalin-fixed paraffin-embedded urothelial carcinoma tissues was determined by immunohistochemistry. Immunohistochemistry showed positive expression of NANOG in all specimens with detection in the cytoplasm, nuclei and the nuclear membrane of the cancer cells. The immunohistochemical expression of NANOG increased across stages and grades of the tumour. The expression of NANOG was not significantly associated with demographic factors; gender (p = 0.376), race (p = 0.718) and age (p = 0.058) as well as with most of the clinicopathological parameters; pathological stage (p = 0.144), grade (p = 0.625), lymph node involvement (p = 0.174) and distant metastasis (p = 0.228). However, NANOG expression showed significant correlation with tumour invasion (p = 0.019). We concluded that NANOG might be a potential biomarker for early diagnosis of urothelial carcinoma of the bladder.
  15. Renganathan E, Guinto R, Mahmood J, Lacey-Hall O, Veerakumarasivam A, Poppema S
    Front Public Health, 2023;11:1072823.
    PMID: 37168072 DOI: 10.3389/fpubh.2023.1072823
    This article is part of the Research Topic 'Health Systems Recovery in the Context of COVID-19 and Protracted Conflict'. Universities, as engines of knowledge creation and dissemination and as incubators of disciplined yet original thinking, have a key role to play in tackling the most complex challenges that societies and our planet face, from infectious diseases to the climate emergency. This commentary presents the perspectives from Sunway University, a young private university in Malaysia that made a strong commitment to the sustainable development goals (SDGs) prior to the pandemic, and its experiences in promoting research, innovation, and learning as part of COVID-19 recovery and in preparation for future crises such as the climate emergency. Some of the university's initiatives include embracing the planetary health approach, reviving essential public health functions, exploring pandemic resilience, addressing 'infodemics' and promoting science diplomacy. The example of Sunway University provides some insights on the opportunities and challenges that academic institutions face as they seek to reorient the paradigm of education, research, and service away from disciplinary siloes and towards a more integrated, preventive, accessible and translational approach.
  16. Zamanian M, Qader Hamadneh LA, Veerakumarasivam A, Abdul Rahman S, Shohaimi S, Rosli R
    Cancer Cell Int, 2016;16:56.
    PMID: 27418879 DOI: 10.1186/s12935-016-0329-y
    The introduction of effective novel biomarkers of invasion and metastasis is integral for the advancement of breast cancer management. The present study focused on the identification and evaluation of calreticulin (CRT) as a potential biomarker for breast cancer invasion.
  17. Akhir MKAM, Choy CS, Abdullah MA, Ghani FA, Veerakumarasivam A, Hussin H
    Malays J Med Sci, 2020 Feb;27(1):37-45.
    PMID: 32158343 MyJurnal DOI: 10.21315/mjms2020.27.1.4
    Introduction: Lin-11, Isl-1 and Mec-3 domains (LIM) homeobox genes are among the most important sub-families of homeobox genes. These genes are thought to play an important role in cancer. In this study, the protein expression of these genes was examined in urothelial carcinoma of the bladder. The expression pattern of Islet-1 (ISL1) and LIM homeobox 5 (LHX5) across different cancer stages and grades, as well as the association between the protein expression of these genes and patient demographics and clinicopathological features, were examined.

    Methods: A total of 100 formalin-fixed paraffin-embedded urothelial carcinoma tissues were selected from the Department of Pathology, Hospital Kuala Lumpur and the protein expression of ISL1 and LHX5 was determined using immunohistochemistry.

    Results: Positive expression of ISL1 and LHX5 was detected in 94% and 98% of the samples, respectively. There were no distinct LHX5 expression patterns associated with different cancer stages, but the proportion of high-expressing tumours was higher in high-grade tumours. In addition, there was a significant association between the expression of LHX5 and tumour grade. The proportion of tumours expressing high levels of ISL1 was found to be highest in later stage tumours.

    Conclusion: The high percentage of tumours expressing both these genes suggests that ISL1 and LHX5 play an important role in bladder tumourigenesis across multiple stages.

  18. Chan LC, Kalyanasundram J, Leong SW, Masarudin MJ, Veerakumarasivam A, Yusoff K, et al.
    BMC Cancer, 2021 May 27;21(1):625.
    PMID: 34044804 DOI: 10.1186/s12885-021-08345-y
    BACKGROUND: Newcastle disease virus (NDV) is an oncolytic virus with excellent selectivity against cancer cells, both in vitro and in vivo. Unfortunately, prolonged in vitro NDV infection results in the development of persistent infection in the cancer cells which are then able to resist NDV-mediated oncolysis. However, the mechanism of persistency of infection remains poorly understood.

    METHODS: In this study, we established persistently NDV-infected EJ28 bladder cancer cells, designated as EJ28P. Global transcriptomic analysis was subsequently carried out by microarray analysis. Differentially expressed genes (DEGs) between EJ28 and EJ28P cells identified by the edgeR program were further analysed by Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA) analyses. In addition, the microarray data were validated by RT-qPCR.

    RESULTS: Persistently NDV-infected EJ28 bladder cancer cells were successfully established and confirmed by flow cytometry. Microarray analysis identified a total of 368 genes as differentially expressed in EJ28P cells when compared to the non-infected EJ28 cells. GSEA revealed that the Wnt/β-catenin and KRAS signalling pathways were upregulated while the TGF-β signalling pathway was downregulated. Findings from this study suggest that the upregulation of genes that are associated with cell growth, pro-survival, and anti-apoptosis may explain the survivability of EJ28P cells and the development of persistent infection of NDV.

    CONCLUSIONS: This study provides insights into the transcriptomic changes that occur and the specific signalling pathways that are potentially involved in the development and maintenance of NDV persistency of infection in bladder cancer cells. These findings warrant further investigation and is crucial towards the development of effective NDV oncolytic therapy against cancer.

  19. Aldoghachi AF, Baharudin A, Ahmad U, Chan SC, Ong TA, Yunus R, et al.
    Dis Markers, 2019;2019:3875147.
    PMID: 31636736 DOI: 10.1155/2019/3875147
    The ceramide synthase 2 (CERS2) gene has been linked to tumour recurrence and invasion in many different types of cancers including bladder cancer. In this study, the expression levels of CERS2 in bladder cancer cell lines were analysed using qRT-PCR and the protein expression in clinical bladder cancer histopathological specimens were examined via immunohistochemistry. The potential utility of CERS2 as a predictive biomarker of response to oncolytic virotherapy was assessed by correlating the CERS2 mRNA expression to IC50 values of cells treated with the Newcastle disease virus (NDV), AF2240 strain. This study demonstrates that CERS2 is differentially expressed in different types of bladder cancer cell lines and that the siRNA-mediated downregulation of the expression of CERS2 reduces the migratory potential of UMUC1 bladder cancer cells. However, there were no significant correlations between the expression levels of the CERS2 protein with bladder cancer grade/stage or between the IC50 values of cells treated with NDV and CERS2 expression. Although the utility of CERS2 expression may be limited, its potential as an antimigration cancer therapeutic should be further examined.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links