Displaying publications 1 - 20 of 24 in total

Abstract:
Sort:
  1. Darah I, Tong WY, Nor-Afifah S, Nurul-Aili Z, Lim SH
    Eur Rev Med Pharmacol Sci, 2014;18(2):171-8.
    PMID: 24488904
    Caulerpa (C.) sertularioides has many therapeutic uses in the practice of traditional medicine in Malaysia. Crude methanolic, diethyl ether extract, ethyl acetate extract and butanolic extract from C. sertularioides were subjected to antimicrobial screening including the three Gram-positive and three Gram-negative diarrhea-caused bacteria.
  2. Nagarajan K, Tong WY, Leong CR, Tan WN
    J Microbiol Biotechnol, 2021 Apr 28;31(4):493-500.
    PMID: 32627761 DOI: 10.4014/jmb.2005.05012
    Endophytic fungi are symbiotically related to plants and spend most of their life cycle within them. In nature, they have a crucial role in plant micro-ecosystem. They are harnessed for their bioactive compounds to counter human health problems and diseases. Endophytic Diaporthe sp. is a widely distributed fungal genus that has garnered much interest within the scientific community. A substantial number of secondary metabolites have been detected from Diaporthe sp. inhabited in various plants. As such, this minireview highlights the potential of Diaporthe sp. as a rich source of bioactive compounds by emphasizing on their diverse chemical entities and potent biological properties. The bioactive compounds produced are of significant importance to act as new lead compounds for drug discovery and development.
  3. Tan WN, Khairuddean M, Wong KC, Tong WY, Ibrahim D
    J Asian Nat Prod Res, 2016 Aug;18(8):804-11.
    PMID: 26999039 DOI: 10.1080/10286020.2016.1160071
    A new xanthone, namely garcinexanthone G (1), along with eight known compounds, stigmasta-5,22-dien-3β-ol (2), stigmasta-5,22-dien-3-O-β-glucopyranoside (3), 3β-acetoxy-11α,12α-epoxyoleanan-28,13β-olide (4), 2,6-dimethoxy-p-benzoquinone (5), 1,3,5-trihydroxy-2-methoxyxanthone (6), 1,3,7-trihydroxyxanthone (7), kaempferol (8) and quercetin (9), were isolated from the stem bark of Garcinia atroviridis. Their structures were elucidated based on spectroscopic methods including nuclear magnetic resonance (NMR-1D and 2D), UV, IR, and mass spectrometry. All the isolated compounds were evaluated for their antioxidant properties based on the DPPH radical scavenging activities. Results showed that 1,3,7-trihydroxyxanthone and quercetin showed significant antioxidant activities with EC50 values of 16.20 and 12.68 μg/ml, respectively, as compared to the control, ascorbic acid (7.4 μg/ml).
  4. Rozman NAS, Tong WY, Leong CR, Tan WN, Hasanolbasori MA, Abdullah SZ
    J Microbiol Biotechnol, 2019 Jul 28;29(7):1009-1013.
    PMID: 31288302 DOI: 10.4014/jmb.1904.04065
    Polymeric nanoparticles are widely used for drug delivery due to their biodegradability property. Among the wide array of polymers, chitosan has received growing interest among researchers. It was widely used as a vehicle in polymeric nanoparticles for drug targeting. This review explored the current research on the antimicrobial activity of chitosan nanoparticles (ChNP) and the impact on the clinical applications. The antimicrobial activities of ChNP were widely reported against bacteria, fungi, yeasts and algae, in both in vivo and in vitro studies. For pharmaceutical applications, ChNP were used as antimicrobial coating for promoting wound healing, preventing infections and combating the rise of infectious disease. Besides, ChNP also exhibited significant inhibitory on foodborne microorganisms, particularly on fruits and vegetables. It is noteworthy that ChNP can be also applied to deliver antimicrobial drugs, which further enhance the efficiency and stability of the antimicrobial agent. The present review addresses the potential antimicrobial applications of ChNP from these few aspects.
  5. Rashid SA, Norman N, Teo SH, Tong WY, Leong CR, Tan WN, et al.
    World J Microbiol Biotechnol, 2021 Aug 16;37(9):152.
    PMID: 34398332 DOI: 10.1007/s11274-021-03118-y
    β-lactam antibiotics are the most frequently prescribed class of drugs worldwide, due to its efficacy and good safety profile. However, the emergence of β-lactamase producing bacterial strains eliminated the use of β-lactam antibiotics as a chemotherapeutic choice. To restore their usability, a non-antibiotic adjuvant in conjunction with β-lactam antibiotics is now being utilised. Cholic acid potentially acts as an adjuvant since it can blunt the pro-inflammatory activity in human. Our main objective is to scrutinise the inhibition of β-lactamase-producing bacteria by adjuvant cholic acid, synergism of the test drugs and the primary mechanism of enzymatic reaction. Antibacterial effect of the cholic acid-ampicillin (CA-AMP) on 7 β-lactamase positive isolates were evaluated accordingly to disc diffusion assay, antibiotic susceptibility test, as well as checkerboard analysis. Then, all activities were compared with ampicillin alone, penicillin alone, cholic acid alone and cholic acid-penicillin combination. The CA-AMP displayed notable antibiotic activity on all test bacteria and depicted synergistic influence by representing low fractional inhibitory concentration index (FIC ≤ 0.5). According to kinetic analyses, CA-AMP behaved as an uncompetitive inhibitor against beta lactamase, with reducing values of Michaelis constant (Km) and maximal velocity (Vmax) recorded. The inhibitor constant (Ki) of CA-AMP was equal to 4.98 ± 0.3 µM, which slightly lower than ampicillin (5.00 ± 0.1 µM).
  6. Lee KC, Tong WY, Ibrahim D, Arai T, Murata Y, Mori Y, et al.
    Appl Biochem Biotechnol, 2017 Jan;181(1):451-463.
    PMID: 27596245 DOI: 10.1007/s12010-016-2223-4
    Application of microbial enzymes for paper deinking is getting tremendous attention due to the rapidly increasing of waste paper every year. This study reports the deinking efficiency of laser-printed paper by the lignocellulolytic enzyme from Penicillium rolfsii c3-2(1) IBRL strain compared to other enzyme sources as well as commercial available enzymes. High enzymatic deinking efficiency of approximately 82 % on laser-printed paper was obtained by pulp treatment with crude enzyme from P. rolfsii c3-2(1) IBRL. However, this crude enzyme was found to reduce the paper strength properties of the pulp based on the results of tensile, tear and burst indices, most probably due to the cellulose degradation. This was further proven by the low viscosity of paper pulp obtained after enzymatic treatment and increasing of sugar production during the treatment. Balancing to this detrimental effect on paper pulp, high deinking efficiency was achieved within a short period of time, in which the enzymatic treatment was conducted for 30 min that enabled contribution to higher brightness index obtained, thus promoting savings of time and energy consumption, therefore environmental sustainability. Extensive research should be conducted to understand the nature and mechanism of enzymatic deinking process by the crude enzyme from P. rolfsii c3-2(1) IBRL in order to improve paper strength properties.
  7. Tong WY, Leong CR, Tan WN, Khairuddean M, Zakaria L, Ibrahim D
    J Microbiol Biotechnol, 2017 Jun 28;27(6):1065-1070.
    PMID: 28297749 DOI: 10.4014/jmb.1612.12009
    This study aimed to examine the anti-candidal efficacy of a novel ketone derivative isolated from Diaporthe sp. ED2, an endophytic fungus residing in medicinal herb Orthosiphon stamieus Benth. The ethyl acetate extract of the fungal culture was separated by open column and reverse phase high-performance liquid chromatography (HPLC). The eluent at retention time 5.64 min in the HPLC system was the only compound that exhibited anti-candidal activity on Kirby-Bauer assay. The structure of the compound was also elucidated by nuclear magnetic resonance and spectroscopy techniques. The purified anti-candidal compound was obtainedas a colorless solid and characterized as 3-hydroxy-5-methoxyhex-5-ene-2,4-dione. On broth microdilution assay, the compound also exhibited fungicidal activity on a clinical strain of Candida albicans at a minimal inhibitory concentration of 3.1 μg/ml. The killing kinetic analysis also revealed that the compound was fungicidal against C. albicans in a concentration- and time-dependent manner. The compound was heat-stable up to 70°C, but its anti-candidal activity was affected at pH 2.
  8. Leong CR, Daud NS, Tong WY, Cheng SY, Tan WN, Hamin NS, et al.
    Food Technol Biotechnol, 2021 Dec;59(4):422-431.
    PMID: 35136367 DOI: 10.17113/ftb.59.04.21.7069
    Research background: Microbial contamination of food products is one of the significant causes of food spoilage and foodborne illnesses. The use of active packaging films incorporated with antimicrobial agents can be a measure to improve food quality and extend shelf life. Nevertheless, antimicrobial agents such as silver, copper, titanium and zinc in the packaging films have raised concerns among consumers due to toxicity issues.

    Experimental approach: The current study aims to develop biodegradable gelatine-based edible films incorporated with microcapsules of Clitoria ternatea-derived anthocyanins as a natural antimicrobial agent. The impact of incorporation of microcapsules with anthocyanins on the morphology, thermal, mechanical, water vapour barrier and physicochemical properties of the gelatine films was evaluated in this study. The effectiveness of the developed films against foodborne pathogens and their application for perishable food protection were also investigated.

    Results and conclusions: The results show that incorporating anthocyanin microcapsules enhances the gelatine film physical and mechanical properties by increasing the thickness, tensile strength, Young's modulus and elongation at break of the films. Scanning electronic microscopy analysis revealed that the film surface morphology with anthocyanin microcapsules had a homogeneous and smooth surface texture compared to the control. The thermogravimetric analysis also showed a slight improvement in the thermal properties of the developed films. Agar well diffusion assay revealed that the developed films exhibit significant inhibition against a broad-spectrum of bacteria. Furthermore, the films composed of gelatine with anthocyanin microcapsules significantly reduced the total viable count of microorganisms in the bean curd during storage for 12 days compared with the control films.

    Novelty and scientific contribution: Increasing global awareness of healthy and safe food with minimal synthetic ingredients as preservatives has sparked the search for the use of antimicrobial agents of natural origins in active food packaging material. In this study, a safe and effective active packaging film was developed using an environmentally friendly biopolymer, gelatine film incorporated with microcapsules of Clitoria ternatea-derived anthocyanins as a natural antimicrobial agent. This study demonstrated that such a method is not only able to improve the film physical properties but can also significantly prolong the shelf life of food products by protecting them from microbial spoilage.

  9. Chuah LF, Nawaz A, Dailin DJ, Oloruntobi O, Habila MA, Tong WY, et al.
    Chemosphere, 2023 Oct;337:139293.
    PMID: 37369285 DOI: 10.1016/j.chemosphere.2023.139293
    Crude oil pollution is one of the most serious environmental issues today, and the clean-up procedure is perhaps the most difficult. Within one to three weeks, the vast majority of oil bacteria may degrade approximately 60% of the crude oil, leaving approximately 40% intact. The by-product metabolites produced during the breakdown of oil are essentially organic molecules in nature. These metabolites inhibit its enzymes, preventing the oil bacteria from further degrading the oil. By combining a variety of different oils with heterotrophic bacteria in a bioreactor, the rate of crude oil biodegradation was accelerated. In this study, two strains of oil-resistant, heterotrophic bacteria (OG1 and OG2-Erythrobacter citreus) and a bacterium that uses hydrocarbons (AR3-Pseudomonas pseudoalcaligenes) were used. Gas chromatography-mass spectroscopy was used to investigate the effectiveness of this consortium of symbiotic bacteria in the biodegradation of crude oil. According to gravimetric and gas chromatography analyses, the consortium bacteria digested 69.6% of the crude oil in the bioreactor, while the AR3 single strain was only able to destroy 61.9% of it. Under the same experimental conditions, consortium bacteria degraded approximately 84550.851 ppb (96.3%) of 16 aliphatic hydrocarbons and 9333.178 ppb (70.5%) of 16 aromatic hydrocarbons in the bioreactor. It may be inferred that the novel consortium of symbiotic bacteria accelerated the biodegradation process and had great potential for use in increasing the bioremediation of hydrocarbon-contaminated locations.
  10. Taher MA, Tan WN, Chear NJ, Leong CR, Rashid SA, Tong WY
    Nat Prod Res, 2023 May;37(10):1674-1679.
    PMID: 35879820 DOI: 10.1080/14786419.2022.2103127
    This study aimed to assess the antimicrobial activity of endophytic Phyllosticta fallopiae L67 isolated from Aloe vera against diabetic wound microorganisms and characterise their active fraction for biologically important metabolites. The dichloromethane (DCM) extract exhibited the most significant activity with inhibition zones ranging from 11.33 to 38.33 mm. The minimal inhibitory and lethality concentrations of DCM extract ranged from 78.13 to 2500.00 µg/ml and 625.00 to 5000.00 µg/ml, respectively. The extract showed teratogenicity and lethality in the zebrafish model, where peritoneal and hepatic oedema occurred at 62.50 µg/ml, and no abnormality appeared at 31.25 µg/ml. The extract also inhibited more than 82% biofilm formation. Bioassay-guided fractionation on DCM extract yielded 18 fractions and the most active fraction was subjected to UPLC-QTOF-MS/MS analysis. Flavones, stilbenes, flavanonols, isoflavonoids, phenolic glycosides and phenol derivatives were detected. In conclusion, endophytic P. fallopiae possessed bioactive metabolites with significant antimicrobial activity against diabetic wound microorganisms.
  11. Wei YM, Tong WY, Tan JS, Lim V, Leong CR, Tan WN
    Curr Microbiol, 2024 Mar 10;81(4):108.
    PMID: 38461425 DOI: 10.1007/s00284-024-03627-7
    Methicillin-resistant Staphylococcus aureus (MRSA) infections have become one of the most threatening multidrug-resistant pathogens. Thus, an ongoing search for anti-MRSA compounds remains an urgent need to effectively treating MRSA infections. Phomopsidione, a novel antibiotic isolated from Diaporthe fraxini, has previously demonstrated potent anti-candidal activity. The present study aimed to investigate the effects of phomopsidione on the viability, virulence, and metabolites profile of MRSA. MRSA was sensitive to phomopsidione in a concentration-dependent manner. Phomopsidione exhibited minimum inhibitory concentration and minimum bactericidal concentration of 62.5 and 500.00 µg/mL against MRSA on broth microdilution assay. The compound showed significant reduction in virulence factors production including extracellular polymeric substances quantification, catalase, and lipase. An untargeted metabolomics analysis using liquid chromatography-high resolution mass spectrometry revealed a significant difference in the metabolites profile of MRSA with 13 putatively identified discriminant metabolites. The present study suggested the potential of phomopsidione as a promising anti-MRSA agent.
  12. Tan WN, Tan ZH, Zulkifli NI, Nik Mohamed Kamal NNS, Rozman NAS, Tong WY, et al.
    Nat Prod Res, 2020 Dec;34(23):3404-3408.
    PMID: 30773054 DOI: 10.1080/14786419.2019.1569012
    Garcinia celebica L., locally known as "manggis hutan" in Malaysia is widely used in folkloric medicine to treat various diseases. The present study was aimed to examine the chemical composition of the essential oil from the leaves of G. celebica L. (EO-GC) and its cytotoxic and antimicrobial potential. EO-GC obtained by hydrodistillation was analysed using capillary GC and GC-MS. Twenty-two compounds were identified, dominated by α-copaene (61.25%), germacrene D (6.72%) and β-caryophyllene (5.85%). In the in vitro MTT assay, EO-GC exhibited significant anti-proliferative effects towards MCF-7 human breast cancer cells with IC50 value of 45.2 μg/mL. Regarding the antimicrobial activity, it showed better inhibitory effects on Gram-positive bacteria than Gram-negative bacteria and none on the fungi and yeasts tested.
  13. Bin Sahadan MY, Tong WY, Tan WN, Leong CR, Bin Misri MN, Chan M, et al.
    Exp Eye Res, 2019 01;178:10-14.
    PMID: 30243569 DOI: 10.1016/j.exer.2018.09.011
    Microbial keratitis is the infection caused by pathogenic microorganisms that commonly occurs among the contact lens users. Various antimicrobial compounds were coated on contact lenses to kill keratitis causing microorganisms, however these compounds caused several adverse side effects. Hence, the aim of this study is to develop a silicone hydrogel contact lens coated with phomopsidione nanoparticle that inhibit keratitis causing clinical isolates. Phomopsidione nanoparticles were synthesized using polyvinyl alcohol as encapsulant. The nanoparticles showed an average size of 77.45 nm, with neutral surface charge. Two drug release patterns were observed in the drug release profile, which are the initial slow release phase with extended drug release (release rate 46.65 μg/h), and the burst release phase observed on Day 2 (release rate 2224.49 μg/h). This well-regulated drug delivery system enables the control of drug release to meet the therapeutic requirements. On agar diffusion assay, 3 out of 5 test microorganisms were inhibited by phomopsidione nanoparticle coated contact lenses, including two Gram negative bacteria. Besides, all test microorganisms showed at least 99% of growth reduction, with the treatment of the contact lens model. The drug loaded onto the nanoparticles is sufficient to prevent the bacterial growth. In conclusion, this study provides an effective alternative to combat keratitis-causing microorganisms among contact wearers.
  14. Tan WN, Lim JQ, Afiqah F, Nik Mohamed Kamal NNS, Abdul Aziz FA, Tong WY, et al.
    Nat Prod Res, 2018 Apr;32(7):854-858.
    PMID: 28782393 DOI: 10.1080/14786419.2017.1361951
    Garcinia atroviridis Griff. ex T. Anders. is used as a medication agent in folkloric medicine. The present study was to examine the chemical composition of the stem bark and leaf of G. atroviridis as well as their cytotoxic effects against MCF-7 cells. The constituents obtained by hydrodistillation were identified using GC-MS. The stem bark oil (EO-SB) composed mainly the palmitoleic acid (51.9%) and palmitic acid (21.9%), while the leaf oil (EO-L) was dominated by (E)-β-farnesene (58.5%) and β-caryophyllene (16.9%). Treatment of MCF-7 cells using EO-L (100 μg/mL) caused more than 50% cell death while EO-SB did not induce cytotoxic effect. EO-L has stimulated the growth of BEAS-2B normal cells, but not in MCF-7 cancerous cells. The IC50 of EO-L in MCF-7 and BEAS-2B cells were 71 and 95 μg/mL, respectively. A combination treatment of EO-L and tamoxifen induced more cell death than the treatment with drug alone at lower doses.
  15. Rawindran H, Lim JW, Lam MK, Supramaniam U, Tong WY, Ng HS, et al.
    Mol Biotechnol, 2023 Nov 14.
    PMID: 37964101 DOI: 10.1007/s12033-023-00955-0
    Conventionally, increasing the yield of microalgal biomass has been the primary focus of research, while the significant protein reserve within this biomass has remained largely unexplored. This protein reserve possesses substantial value and versatility, offering a wide range of prospective applications and presenting an enticing chance for innovation and value enhancement for various sectors. Current study employed an innovative research approach that focused solely on the LCA of protein production potential from microalgal biomass, a lesser-explored aspects within this domain. Most environmental impact categories were shown to be significantly affected by cultivation phase because of the electrical obligation, followed by the harvesting and protein extraction phase. Still, the environmental aspect was seen to yield a minimal impact on global warming potential, i.e., 4 × 10-3 kg CO2, underscoring the ecologically favorable nature of the process. Conversely, the overall energy impact was seen to intensify with NEB of - 39.33 MJ and NER of 0.49, drawing attention to the importance of addressing the energy aspect to harness the full potential of microalgal protein production.
  16. Tong WY, Ahmad Rafiee AR, Leong CR, Tan WN, Dailin DJ, Almarhoon ZM, et al.
    Chemosphere, 2023 Sep;336:139212.
    PMID: 37315854 DOI: 10.1016/j.chemosphere.2023.139212
    Plastics are still the most popular food packaging material and many of them end up in the environment for a long period. Due to packaging material's inability to inhibit microbial growth, beef often contains microorganisms that affect its aroma, colour and texture. Cinnamic acid is categorized as generally recognised as safe and is permitted for use in food. The development of biodegradable food packaging film with cinnamic acid has never been conducted before. This present study was aimed to develop a biodegradable active packaging material for fresh beef using sodium alginate and pectin. The film was successfully developed with solution casting method. The films' thickness, colour, moisture level, dissolution, water vapour permeability, bending strength and elongation at break were comparable to those of polyethylene plastic film in terms of these attributes. The developed film also showed the degradability in soil of 43.26% in a duration of 15 days. Fourier Transform Infrared (FTIR) spectra showed that cinnamic acid was successfully incorporated with the film. The developed film showed significant inhibitory activity on all test foodborne bacteria. On Hohenstein challenge test, a 51.28-70.45% reduction on bacterial growth was also observed. The antibacterial efficacy of the established film by using fresh beef as food model. The meats wrapped with the film showed significant reduction in bacterial load throughout the experimental period by 84.09%. The colour of the beef also showed significant different between control film and edible film during 5 days test. Beef with control film turned into dark brownish and beef with cinnamic acid turn into light brownish. Sodium alginate and pectin film with cinnamic acid showed good biodegradability and antibacterial activity. Further studies can be conducted to investigate the scalability and commercial viability of this environmental-friendly food packaging materials.
  17. Rawindran H, Khoo KS, Satpati GG, Maity S, Chandran K, Lim JW, et al.
    J Sci Food Agric, 2024 Nov 19.
    PMID: 39559900 DOI: 10.1002/jsfa.14038
    Microalgae are widely recognized for their capacity to generate value-added products in a variety of sectors, including the pharmaceutical and food industries, bioenergy industries and wastewater industries. The quality of a microalga is significantly influenced by its proliferation. Along with growth, the biochemical profile may also vary based on the nutrient that is supplemented. The majority of the supplemented nutrients utilized are not in a functional state, as they are typically extracted in liquid form or pretreated prior to use. Parallel to numerous commonly applied pretreatment processes, including chemical, mechanical and biological, thermal pretreatment appears to receive less attention. Hence it is crucial to comprehend the potential for thermal pretreatment as well as its mechanism in militating the solid waste to release additional nutrients in order to enhance the biochemical profile of microalgae. The current review takes a closer look at the impact of various thermal pretreatments on solid waste on influencing microalgal performance in terms of their overall biochemical profiles such as carbohydrates, proteins and lipids. This approach is likely to enhance the circular economy by utilizing waste products and effectively closing the loop on waste. © 2024 Society of Chemical Industry.
  18. Ab Rashid S, Tong WY, Leong CR, Tan WN, Lee CK, Anuar MR, et al.
    Food Technol Biotechnol, 2023 Jun;61(2):151-159.
    PMID: 37457903 DOI: 10.17113/ftb.61.02.23.7595
    RESEARCH BACKGROUND: The presence of Yersinia enterocolitica on raw food products raises the concern of yersiniosis as most of the berries are consumed raw. This is a challenging issue from the food safety aspect since it could increase the occurrence of foodborne diseases among humans. Thus, it is crucial to implement an effective sanitation before the packaging.

    EXPERIMENTAL APPROACH: This study aims to synthesize and characterize thymol-loaded polyvinyl alcohol (Thy/PVA) nanoparticles as a sanitizer for postharvest treatment of blueberries. Thy/PVA nanoparticles were characterized by spectroscopic and microscopic approaches, prior to the analyses of antimicrobial properties.

    RESULTS AND CONCLUSIONS: The diameter size of the nanoparticles was on average 84.7 nm, with a surface charge of -11.73 mV. Based on Fourier transform infrared (FTIR) measurement, the Thy/PVA nanoparticles notably shifted to the frequency of 3275.70, 2869.66, 1651.02 and 1090.52 cm-1. A rapid burst was observed in the first hour of release study, and 74.9 % thymol was released from the PVA nanoparticles. The largest inhibition zone was displayed by methicillin-resistant Staphylococcus aureus (MRSA), followed by Y. enterocolitica and Salmonella typhi. However, amongst these bacteria, the inhibition and killing of Y. enterocolitica required a lower concentration of Thy/PVA nanoparticles. The treatment successfully reduced the bacterial load of Y. enterocolitica on blueberries by 100 %.

    NOVELTY AND SCIENTIFIC CONTRIBUTION: Thymol is a plant-based chemical without reported adverse effects to humans. In this study, by using the nanotechnology method of encapsulation with PVA, we improved the stability and physicochemical properties of thymol. This nanoparticle-based sanitizer could potentially promote the postharvest microbiological safety of raw berries, which may become an alternative practice of food safety.

  19. Tong WY, Tan WN, Kamarul Azizi MA, Leong CR, El Azab IH, Lim JW, et al.
    Chemosphere, 2023 Oct;338:139492.
    PMID: 37451643 DOI: 10.1016/j.chemosphere.2023.139492
    Vancomycin is the last resort antibiotic for the treatment of severe bacterial keratitis. Its clinical application is limited due to its hydrophilicity and high molecular weight. To overcome this, this study aims to develop nanoparticles-laden contact lens for controlled ocular delivery of vancomycin. Polyvinyl alcohol (PVA) was used as encapsulant material. The nanoparticles had a negative surface charge and an average size of 147.6 nm. A satisfactory encapsulation efficiency (61.24%) was obtained. The release profile was observed to be slow and sustained, with a release rate of 1.29 μL mg-1 h-1 for 48 h. Five out of 6 test bacteria were suppressed by vancomycin nanoparticles-laden contact lens. Vancomycin is generally ineffective against Gram-negative bacteria and unable to pass through the outer membrane barrier. In this study, vancomycin inhibited Proteus mirabilis and Pseudomonas aeruginosa. Nano-encapsulation enables vancomycin to penetrate the Gram-negative cell wall and further destroy the bacterial cells. On Hohenstein challenge test, all test bacteria exhibited significant reduction in growth when exposed to vancomycin nanoparticles-laden contact lens. This study created an effective and long-lasting vancomycin delivery system via silicone hydrogel contact lenses, by using PVA as encapsulant. The antibiotic efficacy and vancomycin release should be further studied using ocular in vivo models.
  20. Leong WH, Rawindran H, Ameen F, Alam MM, Chai YH, Ho YC, et al.
    Chemosphere, 2023 Oct;339:139699.
    PMID: 37532206 DOI: 10.1016/j.chemosphere.2023.139699
    Sustainable energy transition has brought the attention towards microalgae utilization as potential feedstock due to its tremendous capabilities over its predecessors for generating more energy with reduced carbon footprint. However, the commercialization of microalgae feedstock remains debatable due to the various factors and considerations taken into scaling-up the conventional microalgal upstream processes. This review provides a state-of-the-art assessment over the recent developments of available and existing microalgal upstream cultivation systems catered for maximum biomass production. The key growth parameters and main cultivation modes necessary for optimized microalgal growth conditions along with the fundamental aspects were also reviewed and evaluated comprehensively. In addition, the advancements and strategies towards potential scale-up of the microalgal cultivation technologies were highlighted to provide insights for further development into the upstream processes aimed at sustainable circular bioeconomy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links