Displaying all 3 publications

Abstract:
Sort:
  1. Mustafa MF, Saliluddin SM, Fakurazi S, Tizen Laim NMS, Md Pauzi SH, Nik Yahya NH, et al.
    Front Oncol, 2021;11:612009.
    PMID: 34490076 DOI: 10.3389/fonc.2021.612009
    Mitochondria play important roles in regulating cell bioenergetics status and reactive oxygen species (ROS) generation. ROS-induced mitochondrial damage is among the main intracellular signal inducers of autophagy. Autophagy is a cellular catabolic process that regulates protein and organelle turnover, while a selective form of autophagy, mitophagy, specifically targets dysfunctional mitochondrial degradation. This study aims to measure the levels of autophagy, mitophagy, oxidative stress, and apoptosis in invasive breast carcinoma tissues using immunohistochemistry (IHC). Tissue microarrays of 76 patients with breast cancer were stained with six IHC markers (MnSOD, Beclin-1, LC3, BNIP3, Parkin, and cleaved caspase 3). The expression intensity was determined for each tumor tissue and the adjacent tumor-matched control tissues. Intermediate and strong staining scores of MnSOD, Beclin-1, LC-3, BNIP-3, and Parkin were significantly higher in tumor tissues compared to the adjacent matched control. The scoring intensity was further classified into tissues with negative staining and positive staining, which showed that positive scores of Beclin-1 and Parkin were significantly high in tumor tissues compared to other markers. Positive association was also noted between BNIP-3 and Beclin-1 as well as LC-3 and cleaved caspase-3 immunostaining. To our knowledge, this is one of the first studies that measure both mitophagy and autophagy in the same breast cancer tissues and the adjacent matched control. The findings from this study will be of great potential in identifying new cancer biomarkers and inspire significant interest in applying anti-autophagy therapies as a possible treatment for breast cancer.
  2. Md Pauzi SH, Masir N, Yahaya A, Mohammed F, Tizen Laim NMS, Mustangin M, et al.
    Indian J Pathol Microbiol, 2021 10 22;64(4):677-682.
    PMID: 34673585 DOI: 10.4103/IJPM.IJPM_983_20
    Background: Human epidermal growth factor receptor 2 (HER2) over-expression in breast cancer is associated with aggressive tumor behavior and predicts response to targeted therapy. Accurate HER2 result is paramount for optimal patient management. However, routine HER2 immunohistochemistry (IHC) testing are subjected to intra- and inter-laboratory variability.

    Objective: This study aims to determine inter-laboratory variation in HER2 IHC testing through a slide-exchange program between five main reference laboratories.

    Method: A total of 20 breast carcinoma cases with different known HER2 expression and gene status were selected by the central laboratory in five testing rounds. Three unstained tissue sections from each case were sent to participating laboratories, which immunostained and interpreted the HER2 immunohistochemistry result. One of the stained slides was sent to one designated participating laboratory for evaluation. Results were analyzed by the central laboratory.

    Results: A complete concordance was achieved in six IHC-positive and six IHC-negative cases, its gene status of which was confirmed by in-situ-hybridization (ISH) study. The discordant results were observed in six equivocal cases, one negative case and one positive case with a concordance rate of 50-88.3%. Interestingly, the negative discordant case actually displays tumor heterogeneity. Good inter-observer agreement was achieved for all participating laboratories (k = 0.713-1.0).

    Conclusion: Standardization of HER2 testing method is important to achieve optimum inter-laboratory concordance. Discordant results were seen mainly in equivocal cases. Intra-tumoral heterogeneity may impact the final HER2 IHC scoring. The continuous quality evaluation is therefore paramount to achieve reliable HER2 results.

  3. Tan GC, Negro G, Pinggera A, Tizen Laim NMS, Mohamed Rose I, Ceral J, et al.
    Hypertension, 2017 07;70(1):129-136.
    PMID: 28584016 DOI: 10.1161/HYPERTENSIONAHA.117.09057
    Mutations in KCNJ5, ATP1A1, ATP2B3, CACNA1D, and CTNNB1 are thought to cause the excessive autonomous aldosterone secretion of aldosterone-producing adenomas (APAs). The histopathology of KCNJ5 mutant APAs, the most common and largest, has been thoroughly investigated and shown to have a zona fasciculata-like composition. This study aims to characterize the histopathologic spectrum of the other genotypes and document the proliferation rate of the different sized APAs. Adrenals from 39 primary aldosteronism patients were immunohistochemically stained for CYP11B2 to confirm diagnosis of an APA. Twenty-eight adenomas had sufficient material for further analysis and were target sequenced at hot spots in the 5 causal genes. Ten adenomas had a KCNJ5 mutation (35.7%), 7 adenomas had an ATP1A1 mutation (25%), and 4 adenomas had a CACNA1D mutation (14.3%). One novel mutation in exon 28 of CACNA1D (V1153G) was identified. The mutation caused a hyperpolarizing shift of the voltage-dependent activation and inactivation and slowed the channel's inactivation kinetics. Immunohistochemical stainings of CYP17A1 as a zona fasciculata cell marker and Ki67 as a proliferation marker were used. KCNJ5 mutant adenomas showed a strong expression of CYP17A1, whereas ATP1A1/CACNA1D mutant adenomas had a predominantly negative expression (P value =1.20×10-4). ATP1A1/CACNA1D mutant adenomas had twice the nuclei with intense staining of Ki67 than KCNJ5 mutant adenomas (0.7% [0.5%-1.9%] versus 0.4% [0.3%-0.7%]; P value =0.04). Further, 3 adenomas with either an ATP1A1 mutation or a CACNA1D mutation had >30% nuclei with moderate Ki67 staining. In summary, similar to KCNJ5 mutant APAs, ATP1A1 and CACNA1D mutant adenomas have a seemingly specific histopathologic phenotype.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links