We fabricated copper oxide nanowires (CuO NWs) ultraviolet (UV) light-assisted hydrogen gas sensor. The fabricated sensor shows promising sensor response behavior towards 100 ppm of H2 at room temperature and elevated temperature at 100 °C when exposed to UV light (3.0 mW/cm2). One hundred-cycle device stability test has been performed, and it is found that for sample elevated at 100 °C, the UV-activated sample achieved stability in the first cycle as compared to the sample without UV irradiation which needed about 10 cycles to achieve stability at the initial stage, whereas the sample tested at room temperature was able to stabilize with the aid of UV irradiation. This indicates that with the aid of UV light, after some "warming up" time, it is possible for the conventional CuO NW sensor which normally work at elevated temperature to function at room temperature because UV source is speculated to play a dominant role to increase the interaction of the surface of CuO NWs and hydrogen gas molecules absorbed after the light exposure.
Anodic aluminium oxide (AAO) is a self-organised nanopore that has been widely studied due to the ease of its synthesization and pore properties manipulation. However, pore growth behaviour under different geometrical surfaces is rarely studied, particularly on the effect of combined curved surfaces towards pore growth properties, which is crucial in designing unique porous platform for specific applications. This paper reports study on the decisive effect of curvature surfaces on development of pore structure and properties at a constant potential. In this work, AAO grown on treated convex and concave surfaces were analysed in terms of pore quantity, pore diameter, interpore distance, pore length and other parameters of pore bottom geometry in conjugation with observation of pore cessation, bifurcation, bending and tapering. The unique formation of tapered pore was observed and described. Major factors deciding pore properties under curved surfaces were identified and discussed. We introduced a new parameter for surface quantification known as central inscribed angle, which was identified to be the central factor which decides pore growth behaviour under a curvature. Here, we observed a different trend in growth rate of pores under different curvatures, which oppose the commonly accepted convex > planar > concave pattern. Levelling height was later identified to be the decisive factor in determining growth rate of pores under a curvature at different geometrical location. These findings open up possibility to precisely control and tailor the growing path and pore structures of AAO simply via anodising an Al sheet under combined curvature surfaces, which could be beneficial for future novel applications.
In this study, we demonstrated the fabrication of the concave conic shape microneedle with the aid of COMSOL Multiphysics simulation. The stress and buckling of the microneedle structure were simulated by applying various loads ranging from 50 to 800 g perpendiculars to the tip in order to predict the occurrence of microneedles structure deformation. The simulation study indicated that the surface buckling deformation does not occur to the microneedle structure with the increment of the load. The microneedles with dimensions of height and diameter tip ranging from 60 to 100 μm and 1 to 4 μm, respectively had been fabricated via an etching process in a mixture of hydrofluoric acid, nitric acid, and acetic acid. Three optimized microneedles but different in the structures were fabricated via the acidic etching process. The reproducibility of 3 different microneedle structures was 15, 20, and 60%, respectively. Stress and buckling analyses of the fabricated microneedles were further carried out on the rat skin. The obtained experimental results show promising applications for the deep dermis, stratum corneum to epidermis layer penetration.