Displaying all 7 publications

Abstract:
Sort:
  1. Thanigaivel S, Vickram AS, Anbarasu K, Gulothungan G, Nanmaran R, Vignesh D, et al.
    Saudi J Biol Sci, 2021 Sep;28(9):5168-5174.
    PMID: 34466094 DOI: 10.1016/j.sjbs.2021.05.048
    Our review focused on nanomaterials-based toxicity evaluation and its exposure to the human and aquatic animals when it was leached and contaminated in the environment. Ecotoxicological assessment and its mechanism mainly affect the skin covering layers and its preventive barriers that protect the foreign particles' skin. Nanoscale materials are essential in the medical field, especially in biomedical and commercial applications such as nanomedicine and drug delivery, mainly in therapeutic treatments. However, various commercial formulations of pharmaceutical drugs are manufactured through a series of clinical trials. The role of such drugs and their metabolites has not met the requirement of an individual's need at the early stage of the treatments except few drugs and medicines with minimal or no side effects. Therefore, biology and medicines are taken up the advantages of nano scaled drugs and formulations for the treatment of various diseases. The present study identifies and analyses the different nanoparticles and their chemical components on the skin and their effects due to penetration. There are advantageous factors available to facilitate positive and negative contact between dermal layers. It creates a new agenda for an established application that is mainly based on skin diseases.
  2. Vickram AS, Anbarasu K, Jeyanthi P, Gulothungan G, Nanmaran R, Thanigaivel S, et al.
    Front Med (Lausanne), 2021;8:723019.
    PMID: 34926486 DOI: 10.3389/fmed.2021.723019
    Semen parameters are been found as a key factor to evaluate the count and morphology in the given semen sample. The deep knowledge of male infertility will unravel with semen parameters correlated with molecular and biochemical parameters. The current research study is to identify the motility associated protein and its structure through the in-silico approach. Semen samples were collected and initial analysis including semen parameters was analyzed by using the World Health Organization protocol. Semen biochemical parameters, namely, seminal plasma protein concentration, fructose content, and glucosidase content were calculated and evaluated for correlation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) were carried out for identification of Septin-4 presence in the semen sample. Mascot search was done for protein conformation and in-silico characterization of Septin-4 by structural modeling in Iterative Threading Assembly Refinement (I-TASSER). Twenty-five nanoseconds molecular dynamics (MD) simulations results showed the stable nature of Septin-4 in the dynamic system. Overall, our results showed the presence of motility-associated protein in normospermia and control samples and not in the case of asthenospermia and oligoasthenospermia. Molecular techniques characterized the presence of Septin-4 and as a novel biomarker for infertility diagnosis.
  3. Manimegalai S, Vickram S, Deena SR, Rohini K, Thanigaivel S, Manikandan S, et al.
    Chemosphere, 2023 Jan;312(Pt 1):137319.
    PMID: 36410505 DOI: 10.1016/j.chemosphere.2022.137319
    Water treatment is a worldwide issue. This review aims to present current problems and future challenges in water treatments with the existing methodologies. Carbon nanotube production, characterization, and prospective uses have been the subject of considerable and rigorous research around the world. They have a large number of technical uses because of their distinct physical characteristics. Various catalyst materials are used to make carbon nanotubes. This review's primary focus is on integrated and single-treatment technologies for all kinds of drinking water resources, including ground and surface water. Inorganic non-metallic matter, heavy metals, natural organic matter, endocrine-disrupting chemicals, disinfection by-products and microbiological pollutants are among the contaminants that these treatment systems can remediate in polluted drinking water resources. Significant advances in the antibacterial and adsorption capabilities of carbon-based nanomaterials have opened up new options for excluding organic/inorganic and biological contaminants from drinking water in recent years. The advancements in multifunctional nanocomposites synthesis pave the possibility for their use in enhanced wastewater purification system design. The adsorptive and antibacterial characteristics of six main kinds of carbon nanomaterials are single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene, graphene oxide, fullerene and single-walled carbon nanohorns. This review potentially addressed the essential metallic and polymeric nanocomposites, are described and compared. Barriers to use these nanoparticles in long-term water treatment are also discussed.
  4. Vickram AS, Srikumar PS, Srinivasan S, Jeyanthi P, Anbarasu K, Thanigaivel S, et al.
    Saudi J Biol Sci, 2021 Jun;28(6):3607-3615.
    PMID: 34121904 DOI: 10.1016/j.sjbs.2021.03.038
    BACKGROUND: Exosomes are nano-sized membrane vesicles, secreted by different types of cells into the body's biological fluids. They are found in abundance in semen as compared to other fluids. Exosomes contain a cargo of lipid molecules, proteins, phospholipids, cholesterol, mRNAs, and miRNAs. Each molecule of seminal exosomes (SE) has a potential role in male reproduction for childbirth. Many potential candidates are available within the seminal exosomes that can be used as diagnostic markers for various diseases or syndromes associated with male reproduction. Also these seminal exospmes play a major role in female reproductive tract for effective fertilization.

    AIM: The aim of this review is to focus on the advancement of human seminal exosomal research and its various properties.

    METHODS: We used many databases like Scopus, Google scholar, NCBI-NLM and other sources to filter the articles of interest published in exosomes. We used phrases like "Exosomes in human semen", "Composition of exosomes in human semen" and other relevant words to filter the best articles.

    RESULTS: Seminal exosomes play a major role in sperm functions like cell-to-cell communication, motility of the sperm cells, maintaining survival capacity for the sperm in the female reproductive tract and spermatogenesis. Also, seminal exosomes are used as a carrier for many regulatory elements using small RNA molecules. miRNAs of the seminal exosomes can be used as a diagnostic marker for prostate cancer instead of prostate specific antigen (PSA). Epididymosomes can be used as a biomarker for reproductive diseases and male infertility.

    CONCLUSION: Seminal exosomes could be used as biological markers for various reproductive disorders, male infertility diagnosis, and it can be used in anti-retroviral research for the identification of novel therapeutics for HIV-1 infection and transmission.

  5. Thanigaivel S, Thomas J, Vickram AS, Anbarasu K, Karunakaran R, Palanivelu J, et al.
    Saudi J Biol Sci, 2021 Dec;28(12):7281-7289.
    PMID: 34867032 DOI: 10.1016/j.sjbs.2021.08.037
    Biological synthesis of silver nanoparticles (AgNPs) by Cheatomorpha antennia and its in vitro and in vivo antibacterial activity against Vibrio harveyi in Macrobrachium rosenbergii was demonstrated in the study. In vitro growth curve analysis, cell viability and bacterial inhibitory assays were performed to test the efficacy of synthesised AgNPs against bacteria. Sodium caseinate was used as an encapsulating agent to deliver the antibacterial drugs and the commercial process of microencapsulation comprises the antibacterial bioelements for oral administration to improve the disease resistance of AgNPs against V. harveyi due to the eco-friendly for non-toxic behaviour of nanoparticle and their treatment. Characterisation of antibacterial silver was performed by UV spectroscopy, X-ray diffraction, Fourier Transform Infrared spectroscopy and Scanning Electron Microscopy. The peak at 420 nm showed the presence of nanoparticles in the solution and the crystal nature of the particle was identified by the XRD. FTIR characterised the functional harveyi biomolecules and further SEM confirmed the size of the nanoparticles around 24 ± 2.4 nm. Experimental pathogenicity of V. harveyi showed 100% mortality at the 120th hour. Treatment of encapsulated AgNPs was administered orally for the relative percentage of survival which acquired almost 90% of survival till 30 days of exposure. In conclusion, the microencapsulation of AgNPs in the biopolymer matrices promotes the health, growth responses, immunity and disease resistance of encapsulated AgNPs with an improved relative percentage of survival.
  6. Priya A, Anusha G, Thanigaivel S, Karthick A, Mohanavel V, Velmurugan P, et al.
    Bioprocess Biosyst Eng, 2023 Mar;46(3):309-321.
    PMID: 35301580 DOI: 10.1007/s00449-022-02715-x
    Microplastics (MPs) in environmental studies have revealed that public sewage treatment plants are a common pathway for microplastics to reach local surroundings. Microplastics are becoming more of a worry, posing a danger to both marine wildlife and humans. These plastic items not only contribute to the macrocosmic proliferation of plastics but also the scattering of microplastics and the concentration of other micropollutant-containing objects, increasing the number of pollutants identified. Microplastics' behavior, movement, transformation, and persistence mechanisms, as well as their mode of action in various wastewater effluent treatment procedures, are still unknown. They are making microplastics made from wastewater a big deal. We know that microplastics enter wastewater treatment facilities (WWTPs), that wastewater is released into the atmosphere, and that this wastewater has been considered to represent a threat to habitats and ground character based on our literature assessment. The basic methods of wastewater and sewage sludge, as well as the treatment procedure and early characterization, are covered throughout the dissection of the problematic scientific conceptualization.
  7. Vickram S, Rohini K, Srinivasan S, Nancy Veenakumari D, Archana K, Anbarasu K, et al.
    Int J Mol Sci, 2021 Feb 22;22(4).
    PMID: 33671837 DOI: 10.3390/ijms22042188
    Zinc (Zn), the second-most necessary trace element, is abundant in the human body. The human body lacks the capacity to store Zn; hence, the dietary intake of Zn is essential for various functions and metabolism. The uptake of Zn during its transport through the body is important for proper development of the three major accessory sex glands: the testis, epididymis, and prostate. It plays key roles in the initial stages of germ cell development and spermatogenesis, sperm cell development and maturation, ejaculation, liquefaction, the binding of spermatozoa and prostasomes, capacitation, and fertilization. The prostate releases more Zn into the seminal plasma during ejaculation, and it plays a significant role in sperm release and motility. During the maternal, labor, perinatal, and neonatal periods, the part of Zn is vital. The average dietary intake of Zn is in the range of 8-12 mg/day in developing countries during the maternal period. Globally, the dietary intake of Zn varies for pregnant and lactating mothers, but the average Zn intake is in the range of 9.6-11.2 mg/day. The absence of Zn and the consequences of this have been discussed using critical evidence. The events and functions of Zn related to successful fertilization have been summarized in detail. Briefly, our current review emphasizes the role of Zn at each stage of human reproduction, from the spermatogenesis process to childbirth. The role of Zn and its supplementation in in vitro fertilization (IVF) opens opportunities for future studies on reproductive biology.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links