OBJECTIVES: Thus, the cytotoxic effects along with investigating the mode of cell death exerted by fractions, AP-9, AP-THR, DS-8 and DS-9 fraction of Acanthaster planci, Diadema setosum sp., on the human cervical cancer cell line, HeLa.
METHODS: The cytotoxicity of fractions has determined by using an MTS assay. The early and late apoptosis was studied by using the High content Screening (HCS) instrument.
RESULTS: The four fractions produced effective cytotoxicity effects with IC50 values at 72hr of less than 20 μg/ml in the order of AP-9 > DS-9 > APTHR-9 > DS-8. The fraction s exhibited cytotoxicity via mediating apoptotic mode of cell death. The early apoptosis by exposure of phosphatidylserine to the outer leaflet of the plasma membrane and late apoptosis due to the presence of green stain (DNA fragmentation) in treated cells.
CONCLUSION: The potent bioactive compounds might be responsible for inducing apoptosis in cancer cells and, thus, the potential to be a successful candidate for exploring upcoming chemotherapeutic drugs.
METHODS: The locomotor activity, learning, and memory were assessed by using open field test and water T-maze test. This study also examined changes in neuronal cell morphology using cresyl violet and apoptosis staining. We also performed immunohistochemical study to analyse the expression of the glutamate AMPA receptor (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) GluA1 subunit and the GABA receptor (γ-Aminobutyric Acid) subtype GABAA α1 subunit in the hippocampus of the same animals.
RESULTS: We found no significant changes in locomotor activity (p > 0.05). The water T-maze data showed that 30 mg/kg dose significantly (p 0.05). Histological data revealed no neuronal morphological changes. Immunohistochemical analysis revealed increased expression of the AMPA GluA1 receptor subunit but there was no effect on GABAA receptor α1 subunit expression in the CA1 and CA2 subregions of the hippocampus.
CONCLUSIONS: The C. asiatica extract therefore improved hippocampus-dependent spatial learning and memory in a dose-dependent manner in rats through the GluA1-containing AMPA receptor in the CA1 and CA2 sub regions of the hippocampus.