Displaying all 5 publications

Abstract:
Sort:
  1. Temsah O, Khan SA, Chaiah Y, Senjab A, Alhasan K, Jamal A, et al.
    Cureus, 2023 Apr;15(4):e37281.
    PMID: 37038381 DOI: 10.7759/cureus.37281
    ChatGPT, an artificial intelligence chatbot, has rapidly gained prominence in various domains, including medical education and healthcare literature. This hybrid narrative review, conducted collaboratively by human authors and ChatGPT, aims to summarize and synthesize the current knowledge of ChatGPT in the indexed medical literature during its initial four months. A search strategy was employed in PubMed and EuropePMC databases, yielding 65 and 110 papers, respectively. These papers focused on ChatGPT's impact on medical education, scientific research, medical writing, ethical considerations, diagnostic decision-making, automation potential, and criticisms. The findings indicate a growing body of literature on ChatGPT's applications and implications in healthcare, highlighting the need for further research to assess its effectiveness and ethical concerns.
  2. Dabbagh R, Jamal A, Bhuiyan Masud JH, Titi MA, Amer YS, Khayat A, et al.
    Cureus, 2023 May;15(5):e38373.
    PMID: 37265897 DOI: 10.7759/cureus.38373
    During the early phase of the COVID-19 pandemic, reverse transcriptase-polymerase chain reaction (RT-PCR) testing faced limitations, prompting the exploration of machine learning (ML) alternatives for diagnosis and prognosis. Providing a comprehensive appraisal of such decision support systems and their use in COVID-19 management can aid the medical community in making informed decisions during the risk assessment of their patients, especially in low-resource settings. Therefore, the objective of this study was to systematically review the studies that predicted the diagnosis of COVID-19 or the severity of the disease using ML. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), we conducted a literature search of MEDLINE (OVID), Scopus, EMBASE, and IEEE Xplore from January 1 to June 31, 2020. The outcomes were COVID-19 diagnosis or prognostic measures such as death, need for mechanical ventilation, admission, and acute respiratory distress syndrome. We included peer-reviewed observational studies, clinical trials, research letters, case series, and reports. We extracted data about the study's country, setting, sample size, data source, dataset, diagnostic or prognostic outcomes, prediction measures, type of ML model, and measures of diagnostic accuracy. Bias was assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). This study was registered in the International Prospective Register of Systematic Reviews (PROSPERO), with the number CRD42020197109. The final records included for data extraction were 66. Forty-three (64%) studies used secondary data. The majority of studies were from Chinese authors (30%). Most of the literature (79%) relied on chest imaging for prediction, while the remainder used various laboratory indicators, including hematological, biochemical, and immunological markers. Thirteen studies explored predicting COVID-19 severity, while the rest predicted diagnosis. Seventy percent of the articles used deep learning models, while 30% used traditional ML algorithms. Most studies reported high sensitivity, specificity, and accuracy for the ML models (exceeding 90%). The overall concern about the risk of bias was "unclear" in 56% of the studies. This was mainly due to concerns about selection bias. ML may help identify COVID-19 patients in the early phase of the pandemic, particularly in the context of chest imaging. Although these studies reflect that these ML models exhibit high accuracy, the novelty of these models and the biases in dataset selection make using them as a replacement for the clinicians' cognitive decision-making questionable. Continued research is needed to enhance the robustness and reliability of ML systems in COVID-19 diagnosis and prognosis.
  3. Burstein R, Henry NJ, Collison ML, Marczak LB, Sligar A, Watson S, et al.
    Nature, 2019 Oct;574(7778):353-358.
    PMID: 31619795 DOI: 10.1038/s41586-019-1545-0
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2-to end preventable child deaths by 2030-we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000-2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations.
  4. Global Burden of Disease 2019 Cancer Collaboration, Kocarnik JM, Compton K, Dean FE, Fu W, Gaw BL, et al.
    JAMA Oncol, 2022 Mar 01;8(3):420-444.
    PMID: 34967848 DOI: 10.1001/jamaoncol.2021.6987
    IMPORTANCE: The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden.

    OBJECTIVE: To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019.

    EVIDENCE REVIEW: The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs).

    FINDINGS: In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles.

    CONCLUSIONS AND RELEVANCE: The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.

  5. Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, et al.
    JAMA Oncol, 2019 Dec 01;5(12):1749-1768.
    PMID: 31560378 DOI: 10.1001/jamaoncol.2019.2996
    IMPORTANCE: Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data.

    OBJECTIVE: To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning.

    EVIDENCE REVIEW: We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence.

    FINDINGS: In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572 000 deaths and 15.2 million DALYs), and stomach cancer (542 000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819 000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601 000 deaths and 17.4 million DALYs), TBL cancer (596 000 deaths and 12.6 million DALYs), and colorectal cancer (414 000 deaths and 8.3 million DALYs).

    CONCLUSIONS AND RELEVANCE: The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer care.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links