Displaying all 3 publications

Abstract:
Sort:
  1. Tang SW, Abubakar S, Devi S, Puthucheary S, Pang T
    Infect Immun, 1997 Jul;65(7):2983-6.
    PMID: 9199477
    The heat shock protein (HSP) response of Salmonella typhi following exposure to elevated growth temperatures was studied. Three major proteins with molecular sizes of 58, 68, and 88 kDa were abundantly expressed when S. typhi cells were shifted from 37 to 45 degrees C and to 55 degrees C. These proteins were also constitutively expressed at 37 degrees C. Western blotting and immunoprecipitation studies with anti-HSP monoclonal antibodies revealed that the 58- and 68-kDa proteins were analogous to the GroEL and DnaK proteins, respectively, of Escherichia coli. These HSPs are also abundantly present in the outer membrane fraction of disrupted cells and, to a lesser extent, in the cytosol. Immunoblotting experiments with sera from patients with a culture-positive diagnosis of typhoid fever showed the presence of antibodies to these HSPs. Nine of twelve sera reacted with the 58-, 68-, and 88-kDa proteins, while three sera reacted only with the 68- and 88-kDa proteins. All 10 sera from healthy individuals showed no binding to these HSPs. In light of the well-documented roles of HSPs in the pathogenesis of microbial infections and as immunodominant antigens, these findings may be relevant for a better understanding of disease processes and for the future development of diagnostic and preventive strategies.
  2. Tang SW, Sukari MA, Rahmani M, Lajis NH, Ali AM
    Molecules, 2011 Apr 07;16(4):3018-28.
    PMID: 21475124 DOI: 10.3390/molecules16043018
    A new abietene diterpene, kaempfolienol (5S,6S,7S,9S,10S,11R,13S-abiet-8(14)-enepenta-6,7,9,11,13-ol, 1), was isolated from a rhizome extract of Kaempferia angustifolia Rosc. along with the known compounds crotepoxide, boesenboxide, zeylenol, 2'-hydroxy-4,4',6'-trimethoxychalcone, (24S)-24-methyl-5α-lanosta-9(11),25-dien-3β-ol, β-sitosterol and β-sitosterol-3-O-β-D-glucopyranoside. The structures of all compounds were elucidated on the basis of mass spectroscopic and NMR data. Zeylenol (2), the major constituent of the plant, was derivatized into diacetate, triacetate and epoxide derivatives through standard organic reactions. The cytotoxic activity of compounds 1, 2 and the zeylenol derivatives was evaluated against the HL-60, MCF-7, HT-29 and HeLa cell lines.
  3. Tang SW, Sukari MA, Neoh BK, Yeap YS, Abdul AB, Kifli N, et al.
    Biomed Res Int, 2014;2014:417674.
    PMID: 25057485 DOI: 10.1155/2014/417674
    Phytochemical investigation on rhizomes of Kaempferia angustifolia has afforded a new abietene diterpene, kaempfolienol (1) along with crotepoxide (2), boesenboxide (3), 2'-hydroxy-4,4',6'-trimethoxychalcone (4), zeylenol (5), 6-methylzeylenol (6), (24S)-24-methyl-5α-lanosta-9(11), 25-dien-3β-ol (7), sucrose, β-sitosterol, and its glycoside (8). The structures of the compounds were elucidated on the basis of spectroscopic methods (IR, MS, and NMR). Isolation of 6-methylzeylenol (6), (24S)-24-methyl-5α-lanosta-9(11), 25-dien-3β-ol (7), and β-sitosterol-3-O-β-D-glucopyranoside (8) from this plant species has never been reported previously. The spectroscopic data of (7) is firstly described in this paper. Cytotoxic screening indicated that most of the pure compounds tested showed significant activity with (4) showing the most potent activity against HL-60 (human promyelocytic leukemia) and MCF-7 (human breast cancer) cell lines. However, all extracts and most of the pure compounds tested were found to be inactive against HT-29 (human colon cancer) and HeLa (human cervical cancer) cell lines. Similarly, none of the extracts or compounds showed activity in the antimicrobial testing.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links