Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Sharma M, Tan RS, Acharya UR
    Comput Biol Med, 2018 11 01;102:341-356.
    PMID: 30049414 DOI: 10.1016/j.compbiomed.2018.07.005
    Myocardial infarction (MI), also referred to as heart attack, occurs when there is an interruption of blood flow to parts of the heart, due to the acute rupture of atherosclerotic plaque, which leads to damage of heart muscle. The heart muscle damage produces changes in the recorded surface electrocardiogram (ECG). The identification of MI by visual inspection of the ECG requires expert interpretation, and is difficult as the ECG signal changes associated with MI can be short in duration and low in magnitude. Hence, errors in diagnosis can lead to delay the initiation of appropriate medical treatment. To lessen the burden on doctors, an automated ECG based system can be installed in hospitals to help identify MI changes on ECG. In the proposed study, we develop a single-channel single lead ECG based MI diagnostic system validated using noisy and clean datasets. The raw ECG signals are taken from the Physikalisch-Technische Bundesanstalt database. We design a novel two-band optimal biorthogonal filter bank (FB) for analysis of the ECG signals. We present a method to design a novel class of two-band optimal biorthogonal FB in which not only the product filter but the analysis lowpass filter is also a halfband filter. The filter design problem has been composed as a constrained convex optimization problem in which the objective function is a convex combination of multiple quadratic functions and the regularity and perfect reconstruction conditions are imposed in the form linear equalities. ECG signals are decomposed into six subbands (SBs) using the newly designed wavelet FB. Following to this, discriminating features namely, fuzzy entropy (FE), signal-fractal-dimensions (SFD), and renyi entropy (RE) are computed from all the six SBs. The features are fed to the k-nearest neighbor (KNN). The proposed system yields an accuracy of 99.62% for the noisy dataset and an accuracy of 99.74% for the clean dataset, using 10-fold cross validation (CV) technique. Our MI identification system is robust and highly accurate. It can thus be installed in clinics for detecting MI.
  2. Oh SL, Ng EYK, Tan RS, Acharya UR
    Comput Biol Med, 2019 Feb;105:92-101.
    PMID: 30599317 DOI: 10.1016/j.compbiomed.2018.12.012
    Abnormality of the cardiac conduction system can induce arrhythmia - abnormal heart rhythm - that can frequently lead to other cardiac diseases and complications, and are sometimes life-threatening. These conduction system perturbations can manifest as morphological changes on the surface electrocardiographic (ECG) signal. Assessment of these morphological changes can be challenging and time-consuming, as ECG signal features are often low in amplitude and subtle. The main aim of this study is to develop an automated computer aided diagnostic (CAD) system that can expedite the process of arrhythmia diagnosis, as an aid to clinicians to provide appropriate and timely intervention to patients. We propose an autoencoder of ECG signals that can diagnose normal sinus beats, atrial premature beats (APB), premature ventricular contractions (PVC), left bundle branch block (LBBB) and right bundle branch block (RBBB). Apart from the first, the rest are morphological beat-to-beat elements that characterize and constitute complex arrhythmia. The novelty of this work lies in how we modified the U-net model to perform beat-wise analysis on heterogeneously segmented ECGs of variable lengths derived from the MIT-BIH arrhythmia database. The proposed system has demonstrated self-learning ability in generating class activations maps, and these generated maps faithfully reflect the cardiac conditions in each ECG cardiac cycle. It has attained a high classification accuracy of 97.32% in diagnosing cardiac conditions, and 99.3% for R peak detection using a ten-fold cross validation strategy. Our developed model can help physicians to screen ECG accurately, potentially resulting in timely intervention of patients with arrhythmia.
  3. Oh SL, Ng EYK, Tan RS, Acharya UR
    Comput Biol Med, 2018 11 01;102:278-287.
    PMID: 29903630 DOI: 10.1016/j.compbiomed.2018.06.002
    Arrhythmia is a cardiac conduction disorder characterized by irregular heartbeats. Abnormalities in the conduction system can manifest in the electrocardiographic (ECG) signal. However, it can be challenging and time-consuming to visually assess the ECG signals due to the very low amplitudes. Implementing an automated system in the clinical setting can potentially help expedite diagnosis of arrhythmia, and improve the accuracies. In this paper, we propose an automated system using a combination of convolutional neural network (CNN) and long short-term memory (LSTM) for diagnosis of normal sinus rhythm, left bundle branch block (LBBB), right bundle branch block (RBBB), atrial premature beats (APB) and premature ventricular contraction (PVC) on ECG signals. The novelty of this work is that we used ECG segments of variable length from the MIT-BIT arrhythmia physio bank database. The proposed system demonstrated high classification performance in the handling of variable-length data, achieving an accuracy of 98.10%, sensitivity of 97.50% and specificity of 98.70% using ten-fold cross validation strategy. Our proposed model can aid clinicians to detect common arrhythmias accurately on routine screening ECG.
  4. Yıldırım Ö, Pławiak P, Tan RS, Acharya UR
    Comput Biol Med, 2018 11 01;102:411-420.
    PMID: 30245122 DOI: 10.1016/j.compbiomed.2018.09.009
    This article presents a new deep learning approach for cardiac arrhythmia (17 classes) detection based on long-duration electrocardiography (ECG) signal analysis. Cardiovascular disease prevention is one of the most important tasks of any health care system as about 50 million people are at risk of heart disease in the world. Although automatic analysis of ECG signal is very popular, current methods are not satisfactory. The goal of our research was to design a new method based on deep learning to efficiently and quickly classify cardiac arrhythmias. Described research are based on 1000 ECG signal fragments from the MIT - BIH Arrhythmia database for one lead (MLII) from 45 persons. Approach based on the analysis of 10-s ECG signal fragments (not a single QRS complex) is applied (on average, 13 times less classifications/analysis). A complete end-to-end structure was designed instead of the hand-crafted feature extraction and selection used in traditional methods. Our main contribution is to design a new 1D-Convolutional Neural Network model (1D-CNN). The proposed method is 1) efficient, 2) fast (real-time classification) 3) non-complex and 4) simple to use (combined feature extraction and selection, and classification in one stage). Deep 1D-CNN achieved a recognition overall accuracy of 17 cardiac arrhythmia disorders (classes) at a level of 91.33% and classification time per single sample of 0.015 s. Compared to the current research, our results are one of the best results to date, and our solution can be implemented in mobile devices and cloud computing.
  5. Sudarshan VK, Acharya UR, Ng EY, Tan RS, Chou SM, Ghista DN
    Comput Biol Med, 2016 Apr 1;71:231-40.
    PMID: 26898671 DOI: 10.1016/j.compbiomed.2016.01.028
    Cross-sectional view echocardiography is an efficient non-invasive diagnostic tool for characterizing Myocardial Infarction (MI) and stages of expansion leading to heart failure. An automated computer-aided technique of cross-sectional echocardiography feature assessment can aid clinicians in early and more reliable detection of MI patients before subsequent catastrophic post-MI medical conditions. Therefore, this paper proposes a novel Myocardial Infarction Index (MII) to discriminate infarcted and normal myocardium using features extracted from apical cross-sectional views of echocardiograms. The cross-sectional view of normal and MI echocardiography images are represented as textons using Maximum Responses (MR8) filter banks. Fractal Dimension (FD), Higher-Order Statistics (HOS), Hu's moments, Gabor Transform features, Fuzzy Entropy (FEnt), Energy, Local binary Pattern (LBP), Renyi's Entropy (REnt), Shannon's Entropy (ShEnt), and Kapur's Entropy (KEnt) features are extracted from textons. These features are ranked using t-test and fuzzy Max-Relevancy and Min-Redundancy (mRMR) ranking methods. Then, combinations of highly ranked features are used in the formulation and development of an integrated MII. This calculated novel MII is used to accurately and quickly detect infarcted myocardium by using one numerical value. Also, the highly ranked features are subjected to classification using different classifiers for the characterization of normal and MI LV ultrasound images using a minimum number of features. Our current technique is able to characterize MI with an average accuracy of 94.37%, sensitivity of 91.25% and specificity of 97.50% with 8 apical four chambers view features extracted from only single frame per patient making this a more reliable and accurate classification.
  6. Sudarshan VK, Acharya UR, Ng EY, Tan RS, Chou SM, Ghista DN
    Comput Biol Med, 2016 Apr 1;71:241-51.
    PMID: 26897481 DOI: 10.1016/j.compbiomed.2016.01.029
    Early expansion of infarcted zone after Acute Myocardial Infarction (AMI) has serious short and long-term consequences and contributes to increased mortality. Thus, identification of moderate and severe phases of AMI before leading to other catastrophic post-MI medical condition is most important for aggressive treatment and management. Advanced image processing techniques together with robust classifier using two-dimensional (2D) echocardiograms may aid for automated classification of the extent of infarcted myocardium. Therefore, this paper proposes novel algorithms namely Curvelet Transform (CT) and Local Configuration Pattern (LCP) for an automated detection of normal, moderately infarcted and severely infarcted myocardium using 2D echocardiograms. The methodology extracts the LCP features from CT coefficients of echocardiograms. The obtained features are subjected to Marginal Fisher Analysis (MFA) dimensionality reduction technique followed by fuzzy entropy based ranking method. Different classifiers are used to differentiate ranked features into three classes normal, moderate and severely infarcted based on the extent of damage to myocardium. The developed algorithm has achieved an accuracy of 98.99%, sensitivity of 98.48% and specificity of 100% for Support Vector Machine (SVM) classifier using only six features. Furthermore, we have developed an integrated index called Myocardial Infarction Risk Index (MIRI) to detect the normal, moderately and severely infarcted myocardium using a single number. The proposed system may aid the clinicians in faster identification and quantification of the extent of infarcted myocardium using 2D echocardiogram. This system may also aid in identifying the person at risk of developing heart failure based on the extent of infarcted myocardium.
  7. Vidya KS, Ng EY, Acharya UR, Chou SM, Tan RS, Ghista DN
    Comput Biol Med, 2015 Jul;62:86-93.
    PMID: 25912990 DOI: 10.1016/j.compbiomed.2015.03.033
    Myocardial Infarction (MI) or acute MI (AMI) is one of the leading causes of death worldwide. Precise and timely identification of MI and extent of muscle damage helps in early treatment and reduction in the time taken for further tests. MI diagnosis using 2D echocardiography is prone to inter-/intra-observer variability in the assessment. Therefore, a computerised scheme based on image processing and artificial intelligent techniques can reduce the workload of clinicians and improve the diagnosis accuracy. A Computer-Aided Diagnosis (CAD) of infarcted and normal ultrasound images will be useful for clinicians. In this study, the performance of CAD approach using Discrete Wavelet Transform (DWT), second order statistics calculated from Gray-Level Co-Occurrence Matrix (GLCM) and Higher-Order Spectra (HOS) texture descriptors are compared. The proposed system is validated using 400 MI and 400 normal ultrasound images, obtained from 80 patients with MI and 80 normal subjects. The extracted features are ranked based on t-value and fed to the Support Vector Machine (SVM) classifier to obtain the best performance using minimum number of features. The features extracted from DWT coefficients obtained an accuracy of 99.5%, sensitivity of 99.75% and specificity of 99.25%; GLCM have achieved an accuracy of 85.75%, sensitivity of 90.25% and specificity of 81.25%; and HOS obtained an accuracy of 93.0%, sensitivity of 94.75% and specificity of 91.25%. Among the three techniques presented DWT yielded the highest classification accuracy. Thus, the proposed CAD approach may be used as a complementary tool to assist cardiologists in making a more accurate diagnosis for the presence of MI.
  8. Abdar M, Książek W, Acharya UR, Tan RS, Makarenkov V, Pławiak P
    Comput Methods Programs Biomed, 2019 Oct;179:104992.
    PMID: 31443858 DOI: 10.1016/j.cmpb.2019.104992
    BACKGROUND AND OBJECTIVE: Coronary artery disease (CAD) is one of the commonest diseases around the world. An early and accurate diagnosis of CAD allows a timely administration of appropriate treatment and helps to reduce the mortality. Herein, we describe an innovative machine learning methodology that enables an accurate detection of CAD and apply it to data collected from Iranian patients.

    METHODS: We first tested ten traditional machine learning algorithms, and then the three-best performing algorithms (three types of SVM) were used in the rest of the study. To improve the performance of these algorithms, a data preprocessing with normalization was carried out. Moreover, a genetic algorithm and particle swarm optimization, coupled with stratified 10-fold cross-validation, were used twice: for optimization of classifier parameters and for parallel selection of features.

    RESULTS: The presented approach enhanced the performance of all traditional machine learning algorithms used in this study. We also introduced a new optimization technique called N2Genetic optimizer (a new genetic training). Our experiments demonstrated that N2Genetic-nuSVM provided the accuracy of 93.08% and F1-score of 91.51% when predicting CAD outcomes among the patients included in a well-known Z-Alizadeh Sani dataset. These results are competitive and comparable to the best results in the field.

    CONCLUSIONS: We showed that machine-learning techniques optimized by the proposed approach, can lead to highly accurate models intended for both clinical and research use.

  9. Faust O, Acharya UR, Sudarshan VK, Tan RS, Yeong CH, Molinari F, et al.
    Phys Med, 2017 Jan;33:1-15.
    PMID: 28010920 DOI: 10.1016/j.ejmp.2016.12.005
    The diagnosis of Coronary Artery Disease (CAD), Myocardial Infarction (MI) and carotid atherosclerosis is of paramount importance, as these cardiovascular diseases may cause medical complications and large number of death. Ultrasound (US) is a widely used imaging modality, as it captures moving images and image features correlate well with results obtained from other imaging methods. Furthermore, US does not use ionizing radiation and it is economical when compared to other imaging modalities. However, reading US images takes time and the relationship between image and tissue composition is complex. Therefore, the diagnostic accuracy depends on both time taken to read the images and experience of the screening practitioner. Computer support tools can reduce the inter-operator variability with lower subject specific expertise, when appropriate processing methods are used. In the current review, we analysed automatic detection methods for the diagnosis of CAD, MI and carotid atherosclerosis based on thoracic and Intravascular Ultrasound (IVUS). We found that IVUS is more often used than thoracic US for CAD. But for MI and carotid atherosclerosis IVUS is still in the experimental stage. Furthermore, thoracic US is more often used than IVUS for computer aided diagnosis systems.
  10. Shamsi S, Tran H, Tan RS, Tan ZJ, Lim LY
    Drug Metab. Dispos., 2017 01;45(1):49-55.
    PMID: 27821437
    Inhibition of cytochrome P450 (P450) enzymes (CYP) has been shown to lower the metabolism of drugs that are P450 substrates and to consequently alter their pharmacokinetic profiles. Curcumin (CUR), piperine (PIP), and capsaicin (CAP) are spice components (SC) that inhibit the activities of a range of P450 enzymes, but the selection of which SC to be prioritized for further development as an adjuvant will depend on the ranking order of the inhibitory potential of the SCs on specific P450 isozymes. We used common human recombinant enzyme platforms to provide a comparative evaluation of the inhibitory activities of CUR, PIP, and CAP on the principal drug-metabolizing P450 enzymes. SC-mediated inhibition of CYP3A4 was found to rank in the order of CAP (IC501.84 ± 0.71 µM) ∼ PIP (2.12 ± 0.45 µM) > CUR (11.93 ± 3.49 µM), while CYP2C9 inhibition was in the order of CAP (11.95 ± 4.24 µM) ∼ CUR (14.58 ± 4.57 µM) > PIP (89.62 ± 9.17 µM). CAP and PIP were significantly more potent inhibitors of CYP1A2 (IC502.14 ± 0.22 µM and 14.19 ± 4.15 µM, respectively) than CUR (IC50> 100 µM), while all three SCs exhibited weak activity toward CYP2D6 (IC5095.42 ± 12.09 µM for CUR, 99.99 ± 5.88 µM for CAP, and 110.40 ± 3.23 µM for PIP). Of the three SCs, CAP thus has the strongest potential for further development into an inhibitor of multiple CYPs for use in the clinic. Data from this study are also useful for managing potential drug-SC interactions.
  11. Acharya UR, Faust O, Ciaccio EJ, Koh JEW, Oh SL, Tan RS, et al.
    Comput Methods Programs Biomed, 2019 Jul;175:163-178.
    PMID: 31104705 DOI: 10.1016/j.cmpb.2019.04.018
    BACKGROUND AND OBJECTIVE: Complex fractionated atrial electrograms (CFAE) may contain information concerning the electrophysiological substrate of atrial fibrillation (AF); therefore they are of interest to guide catheter ablation treatment of AF. Electrogram signals are shaped by activation events, which are dynamical in nature. This makes it difficult to establish those signal properties that can provide insight into the ablation site location. Nonlinear measures may improve information. To test this hypothesis, we used nonlinear measures to analyze CFAE.

    METHODS: CFAE from several atrial sites, recorded for a duration of 16 s, were acquired from 10 patients with persistent and 9 patients with paroxysmal AF. These signals were appraised using non-overlapping windows of 1-, 2- and 4-s durations. The resulting data sets were analyzed with Recurrence Plots (RP) and Recurrence Quantification Analysis (RQA). The data was also quantified via entropy measures.

    RESULTS: RQA exhibited unique plots for persistent versus paroxysmal AF. Similar patterns were observed to be repeated throughout the RPs. Trends were consistent for signal segments of 1 and 2 s as well as 4 s in duration. This was suggestive that the underlying signal generation process is also repetitive, and that repetitiveness can be detected even in 1-s sequences. The results also showed that most entropy metrics exhibited higher measurement values (closer to equilibrium) for persistent AF data. It was also found that Determinism (DET), Trapping Time (TT), and Modified Multiscale Entropy (MMSE), extracted from signals that were acquired from locations at the posterior atrial free wall, are highly discriminative of persistent versus paroxysmal AF data.

    CONCLUSIONS: Short data sequences are sufficient to provide information to discern persistent versus paroxysmal AF data with a significant difference, and can be useful to detect repeating patterns of atrial activation.

  12. Yildirim O, Baloglu UB, Tan RS, Ciaccio EJ, Acharya UR
    Comput Methods Programs Biomed, 2019 Jul;176:121-133.
    PMID: 31200900 DOI: 10.1016/j.cmpb.2019.05.004
    BACKGROUND AND OBJECTIVE: For diagnosis of arrhythmic heart problems, electrocardiogram (ECG) signals should be recorded and monitored. The long-term signal records obtained are analyzed by expert cardiologists. Devices such as the Holter monitor have limited hardware capabilities. For improved diagnostic capacity, it would be helpful to detect arrhythmic signals automatically. In this study, a novel approach is presented as a candidate solution for these issues.

    METHODS: A convolutional auto-encoder (CAE) based nonlinear compression structure is implemented to reduce the signal size of arrhythmic beats. Long-short term memory (LSTM) classifiers are employed to automatically recognize arrhythmias using ECG features, which are deeply coded with the CAE network.

    RESULTS: Based upon the coded ECG signals, both storage requirement and classification time were considerably reduced. In experimental studies conducted with the MIT-BIH arrhythmia database, ECG signals were compressed by an average 0.70% percentage root mean square difference (PRD) rate, and an accuracy of over 99.0% was observed.

    CONCLUSIONS: One of the significant contributions of this study is that the proposed approach can significantly reduce time duration when using LSTM networks for data analysis. Thus, a novel and effective approach was proposed for both ECG signal compression, and their high-performance automatic recognition, with very low computational cost.

  13. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A, et al.
    Comput Biol Med, 2017 10 01;89:389-396.
    PMID: 28869899 DOI: 10.1016/j.compbiomed.2017.08.022
    The electrocardiogram (ECG) is a standard test used to monitor the activity of the heart. Many cardiac abnormalities will be manifested in the ECG including arrhythmia which is a general term that refers to an abnormal heart rhythm. The basis of arrhythmia diagnosis is the identification of normal versus abnormal individual heart beats, and their correct classification into different diagnoses, based on ECG morphology. Heartbeats can be sub-divided into five categories namely non-ectopic, supraventricular ectopic, ventricular ectopic, fusion, and unknown beats. It is challenging and time-consuming to distinguish these heartbeats on ECG as these signals are typically corrupted by noise. We developed a 9-layer deep convolutional neural network (CNN) to automatically identify 5 different categories of heartbeats in ECG signals. Our experiment was conducted in original and noise attenuated sets of ECG signals derived from a publicly available database. This set was artificially augmented to even out the number of instances the 5 classes of heartbeats and filtered to remove high-frequency noise. The CNN was trained using the augmented data and achieved an accuracy of 94.03% and 93.47% in the diagnostic classification of heartbeats in original and noise free ECGs, respectively. When the CNN was trained with highly imbalanced data (original dataset), the accuracy of the CNN reduced to 89.07%% and 89.3% in noisy and noise-free ECGs. When properly trained, the proposed CNN model can serve as a tool for screening of ECG to quickly identify different types and frequency of arrhythmic heartbeats.
  14. Wong JJ, Purbojati RW, Tan RS, Pettersson S, Koh AS
    ESC Heart Fail, 2022 Dec;9(6):4366-4368.
    PMID: 36071622 DOI: 10.1002/ehf2.14139
  15. Tuncer I, Barua PD, Dogan S, Baygin M, Tuncer T, Tan RS, et al.
    Inform Med Unlocked, 2023;36:101158.
    PMID: 36618887 DOI: 10.1016/j.imu.2022.101158
    BACKGROUND: Chest computed tomography (CT) has a high sensitivity for detecting COVID-19 lung involvement and is widely used for diagnosis and disease monitoring. We proposed a new image classification model, swin-textural, that combined swin-based patch division with textual feature extraction for automated diagnosis of COVID-19 on chest CT images. The main objective of this work is to evaluate the performance of the swin architecture in feature engineering.

    MATERIAL AND METHOD: We used a public dataset comprising 2167, 1247, and 757 (total 4171) transverse chest CT images belonging to 80, 80, and 50 (total 210) subjects with COVID-19, other non-COVID lung conditions, and normal lung findings. In our model, resized 420 × 420 input images were divided using uniform square patches of incremental dimensions, which yielded ten feature extraction layers. At each layer, local binary pattern and local phase quantization operations extracted textural features from individual patches as well as the undivided input image. Iterative neighborhood component analysis was used to select the most informative set of features to form ten selected feature vectors and also used to select the 11th vector from among the top selected feature vectors with accuracy >97.5%. The downstream kNN classifier calculated 11 prediction vectors. From these, iterative hard majority voting generated another nine voted prediction vectors. Finally, the best result among the twenty was determined using a greedy algorithm.

    RESULTS: Swin-textural attained 98.71% three-class classification accuracy, outperforming published deep learning models trained on the same dataset. The model has linear time complexity.

    CONCLUSIONS: Our handcrafted computationally lightweight swin-textural model can detect COVID-19 accurately on chest CT images with low misclassification rates. The model can be implemented in hospitals for efficient automated screening of COVID-19 on chest CT images. Moreover, findings demonstrate that our presented swin-textural is a self-organized, highly accurate, and lightweight image classification model and is better than the compared deep learning models for this dataset.

  16. Acharya M, Deo RC, Tao X, Barua PD, Devi A, Atmakuru A, et al.
    Comput Methods Programs Biomed, 2024 Nov 12;259:108506.
    PMID: 39581069 DOI: 10.1016/j.cmpb.2024.108506
    BACKGROUND AND OBJECTIVES: Mild Cognitive Impairment (MCI) and Alzheimer's Disease (AD) are progressive neurological disorders that significantly impair the cognitive functions, memory, and daily activities. They affect millions of individuals worldwide, posing a significant challenge for its diagnosis and management, leading to detrimental impacts on patients' quality of lives and increased burden on caregivers. Hence, early detection of MCI and AD is crucial for timely intervention and effective disease management.

    METHODS: This study presents a comprehensive systematic review focusing on the applications of deep learning in detecting MCI and AD using electroencephalogram (EEG) signals. Through a rigorous literature screening process based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the research has investigated 74 different papers in detail to analyze the different approaches used to detect MCI and AD neurological disorders.

    RESULTS: The findings of this study stand out as the first to deal with the classification of dual MCI and AD (MCI+AD) using EEG signals. This unique approach has enabled us to highlight the state-of-the-art high-performing models, specifically focusing on deep learning while examining their strengths and limitations in detecting the MCI, AD, and the MCI+AD comorbidity situations.

    CONCLUSION: The present study has not only identified the current limitations in deep learning area for MCI and AD detection but also proposes specific future directions to address these neurological disorders by implement best practice deep learning approaches. Our main goal is to offer insights as references for future research encouraging the development of deep learning techniques in early detection and diagnosis of MCI and AD neurological disorders. By recommending the most effective deep learning tools, we have also provided a benchmark for future research, with clear implications for the practical use of these techniques in healthcare.

  17. Sudarshan VK, Acharya UR, Oh SL, Adam M, Tan JH, Chua CK, et al.
    Comput Biol Med, 2017 04 01;83:48-58.
    PMID: 28231511 DOI: 10.1016/j.compbiomed.2017.01.019
    Identification of alarming features in the electrocardiogram (ECG) signal is extremely significant for the prediction of congestive heart failure (CHF). ECG signal analysis carried out using computer-aided techniques can speed up the diagnosis process and aid in the proper management of CHF patients. Therefore, in this work, dual tree complex wavelets transform (DTCWT)-based methodology is proposed for an automated identification of ECG signals exhibiting CHF from normal. In the experiment, we have performed a DTCWT on ECG segments of 2s duration up to six levels to obtain the coefficients. From these DTCWT coefficients, statistical features are extracted and ranked using Bhattacharyya, entropy, minimum redundancy maximum relevance (mRMR), receiver-operating characteristics (ROC), Wilcoxon, t-test and reliefF methods. Ranked features are subjected to k-nearest neighbor (KNN) and decision tree (DT) classifiers for automated differentiation of CHF and normal ECG signals. We have achieved 99.86% accuracy, 99.78% sensitivity and 99.94% specificity in the identification of CHF affected ECG signals using 45 features. The proposed method is able to detect CHF patients accurately using only 2s of ECG signal length and hence providing sufficient time for the clinicians to further investigate on the severity of CHF and treatments.
  18. Adam M, Oh SL, Sudarshan VK, Koh JE, Hagiwara Y, Tan JH, et al.
    Comput Methods Programs Biomed, 2018 Jul;161:133-143.
    PMID: 29852956 DOI: 10.1016/j.cmpb.2018.04.018
    Cardiovascular diseases (CVDs) are the leading cause of deaths worldwide. The rising mortality rate can be reduced by early detection and treatment interventions. Clinically, electrocardiogram (ECG) signal provides useful information about the cardiac abnormalities and hence employed as a diagnostic modality for the detection of various CVDs. However, subtle changes in these time series indicate a particular disease. Therefore, it may be monotonous, time-consuming and stressful to inspect these ECG beats manually. In order to overcome this limitation of manual ECG signal analysis, this paper uses a novel discrete wavelet transform (DWT) method combined with nonlinear features for automated characterization of CVDs. ECG signals of normal, and dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM) and myocardial infarction (MI) are subjected to five levels of DWT. Relative wavelet of four nonlinear features such as fuzzy entropy, sample entropy, fractal dimension and signal energy are extracted from the DWT coefficients. These features are fed to sequential forward selection (SFS) technique and then ranked using ReliefF method. Our proposed methodology achieved maximum classification accuracy (acc) of 99.27%, sensitivity (sen) of 99.74%, and specificity (spec) of 98.08% with K-nearest neighbor (kNN) classifier using 15 features ranked by the ReliefF method. Our proposed methodology can be used by clinical staff to make faster and accurate diagnosis of CVDs. Thus, the chances of survival can be significantly increased by early detection and treatment of CVDs.
  19. Tan JH, Hagiwara Y, Pang W, Lim I, Oh SL, Adam M, et al.
    Comput Biol Med, 2018 03 01;94:19-26.
    PMID: 29358103 DOI: 10.1016/j.compbiomed.2017.12.023
    Coronary artery disease (CAD) is the most common cause of heart disease globally. This is because there is no symptom exhibited in its initial phase until the disease progresses to an advanced stage. The electrocardiogram (ECG) is a widely accessible diagnostic tool to diagnose CAD that captures abnormal activity of the heart. However, it lacks diagnostic sensitivity. One reason is that, it is very challenging to visually interpret the ECG signal due to its very low amplitude. Hence, identification of abnormal ECG morphology by clinicians may be prone to error. Thus, it is essential to develop a software which can provide an automated and objective interpretation of the ECG signal. This paper proposes the implementation of long short-term memory (LSTM) network with convolutional neural network (CNN) to automatically diagnose CAD ECG signals accurately. Our proposed deep learning model is able to detect CAD ECG signals with a diagnostic accuracy of 99.85% with blindfold strategy. The developed prototype model is ready to be tested with an appropriate huge database before the clinical usage.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links