The relationship of Atlantic salmon gastrointestinal (GI) tract bacteria to environmental factors, in particular water temperature within a commercial mariculture system, was investigated.
To better understand salmon GI tract microbial community dynamics in relation to diet, a feeding trial was performed utilising diets with different proportions of fish meal, protein, lipid and energy levels. Salmon gut dysfunction has been associated with the occurrence of casts, or an empty hind gut. A categorical scoring system describing expressed digesta consistency was evaluated in relation to GI tract community structure. Faster growing fish generally had lower faecal scores while the diet cohorts showed minor differences in faecal score though the overall lowest scores were observed with a low protein, low energy diet. The GI tract bacterial communities were highly dynamic over time with the low protein, low energy diet associated with the most divergent community structure. This included transiently increased abundance of anaerobic (Bacteroidia and Clostridia) during January and February, and facultatively anaerobic (lactic acid bacteria) taxa from February onwards. The digesta had enriched populations of these groups in relation to faecal cast samples. The majority of samples (60-86 %) across all diet cohorts were eventually dominated by the genus Aliivibrio. The results suggest that an interaction between time of sampling and diet is most strongly related to community structure. Digesta categorization revealed microbes involved with metabolism of diet components change progressively over time and could be a useful system to assess feeding responses.
In this study, microbial community dynamics were assessed within a simple in vitro model system in order to understand those changes influenced by diet. The abundance and diversity of bacteria were monitored within different treatment slurries inoculated with salmon faecal samples in order to mimic the effects of dietary variables. A total of five complete diets and two ingredients (plant meal) were tested. The total viable counts (TVCs) and sequencing data revealed that there was very clear separation between the complete diets and the plant meal treatments, suggesting a dynamic response by the allochthonous bacteria to the treatments. Automated ribosomal intergenic spacer analysis (ARISA) results showed that different diet formulations produced different patterns of fragments, with no separation between the complete diets. However, plant-based protein ingredients were clearly separated from the other treatments. 16S rRNA Illumina-based sequencing analysis showed that members of the genera Aliivibrio, Vibrio and Photobacterium became predominant for all complete diets treatments. The plant-based protein ingredient treatments only sustained weak growth of the genus Sphingomonas. In vitro based testing of diets could be a useful strategy to determine the potential impact of either complete feeds or ingredients on major fish gastrointestinal tract microbiome members.