PURPOSE: This study aims to semiquantitatively evaluate the standardized uptake value (SUV) of 99mTc-methylene diphosphonate (MDP) radionuclide tracer in the normal vertebrae of breast cancer patients using an integrated single-photon emission computed tomography (SPECT)/computed tomography (CT) scanner.
OVERVIEW OF LITERATURE: Molecular imaging techniques using gamma cameras and stand-alone SPECT have traditionally been utilized to evaluate metastatic bone diseases. However, these methods lack quantitative analysis capabilities, impeding accurate uptake characterization.
METHODS: A total of 30 randomly selected female breast cancer patients were enrolled in this study. The SUV mean (SUVmean) and SUV maximum (SUVmax) values for 286 normal vertebrae at the thoracic and lumbar levels were calculated based on the patients' body weight (BW), body surface area (BSA), and lean body mass (LBM). Additionally, 106 degenerative joint disease (DJD) lesions of the spine were also characterized, and both their BW SUVmean and SUVmax values were obtained. A receiver operating characteristic (ROC) curve analysis was then performed to determine the cutoff value of SUV for differentiating DJD from normal vertebrae.
RESULTS: The mean±standard deviations for the SUVmean and SUVmax in the normal vertebrae displayed a relatively wide variability: 3.92±0.27 and 6.51±0.72 for BW, 1.05±0.07 and 1.75±0.17 for BSA, and 2.70±0.19 and 4.50±0.44 for LBM, respectively. Generally, the SUVmean had a lower coefficient of variation than the SUVmax. For DJD, the mean±standard deviation for the BW SUVmean and SUVmax was 5.26±3.24 and 7.50±4.34, respectively. Based on the ROC curve, no optimal cutoff value was found to differentiate DJD from normal vertebrae.
CONCLUSIONS: In this study, the SUV of 99mTc-MDP was successfully determined using SPECT/CT. This research provides an approach that could potentially aid in the clinical quantification of radionuclide uptake in normal vertebrae for the management of breast cancer patients.
METHODS: Out of the 44 healthy individuals screened, 31 (14 females; mean age: 28.4 ± 7.0 years) were enrolled and underwent GES using the standardized egg-white meal. All participants were randomly assigned to either 99mTc-SP or 99mTc-SC on the first GES session before crossed over to the other formulation after 2 weeks.
RESULTS: Both kits achieved the radiochemical purities of > 95%. The median rate (95th upper normative limit) of gastric emptying, reported as total gastric meal retention between 99mTc-SP and 99mTc-SC, was found to be comparable at all measured time points: 0.5 h [85.0% (96.6%) vs. 82.0% (94.0%)], 1 h [70.0% (86.4%) vs. 65.0% (86.6%)], 2 h [31.0% (55.8%) vs. 25.0% (64.4%)], 3 h [7.0% (26.3%) vs. 5.0% (29.9%)], and 4 h [3.0% (10.3%) vs. 2.0% (9.9%)]; P > 0.05. In addition, both radiotracers correlated well (Kendall's Tau (τ) coefficient = 0.498, P
Methods: In vitro models of breast cancer cell lines (MCF-7, MDA-MB-231) and normal fibroblast cell line (NIH/3T3) were employed. Cellular localization and cytotoxicity studies were conducted prior to inspection on the radiosensitization effects and generation of reactive oxygen species (ROS) on three proposed radiosensitizers: BiONPs, Cis, and BiONPs-Cis combination (BC). The optimal, non-cytotoxic concentration of BiONPs (0.5 mM) and the 25% inhibitory concentration of Cis (1.30 µM) were applied. The radiosensitization effects were evaluated by using a 0.38 MeV Iridium-192 HDR brachytherapy source over a prescribed dose range of 0 Gy to 4 Gy.
Results: The cellular localization of BiONPs was visualized by light microscopy and accumulation of the BiONPs within the vicinity of the nuclear membrane was observed. Quantification of the sensitization enhancement ratio extrapolated from the survival curves indicates radiosensitization effects for MCF-7 and MDA-MB-231 when treated with BiONPs, Cis, and BC. However, NIH/3T3 cells exhibited contradictive behavior as it only reacted towards the BC combination. Nonetheless, the MCF-7 cell line loaded with BC shows the highest SER of 4.29. ROS production analysis, on the other hand, shows that Cis and BC radiosensitizers generated the highest free radicals in comparison to BiONPs alone.
Conclusion: A BiONPs-Cis combination was unveiled as a novel approach that offers promising radiosensitization enhancement that will increase the efficiency of tumor control while preserving the normal tissue at a reduced dose. This data is the first precedent to prove the synergetic implication of BiONPs, Cis, and HDR brachytherapy that will be beneficial for future chemoradiotherapy strategies in cancer care.
PURPOSE: To compare and correlate technetium-99m methylene diphosphonate uptake between benign and metastatic bone lesions using semiquantitative analysis of maximum standard uptake value (SUVmax) and mean Hounsfield unit (HU) in single-photon emission computed tomography-computed tomography (SPECT-CT).
OVERVIEW OF LITERATURE: Qualitative interpretation of metastatic bone lesions in breast cancer on bone scintigraphy is often complicated by coexisting benign lesions.
METHODS: In total, 185 lesions were identified on bone and SPECT-CT scans from 32 patients. Lesions were classified as metastatic (109 sclerotic lesions) and benign (76 lesions) morphologically on low-dose CT. Semiquantitative analysis using SUVmax and mean HU was performed on the lesions and compared. To discriminate benign and metastatic lesions, the correlation between SUVmax and mean HU was determined using the intraclass correlation coefficients.
RESULTS: The SUVmax was higher in metastatic lesions (20.66±14.36) but lower in benign lesions (10.18±12.79) (p<0.001). The mean HU was lower in metastatic lesions (166.62±202.02) but higher in benign lesions (517.65±192.8) (p<0.001). A weak negative correlation was found between the SUVmax and the mean HU for benign lesions, and a weak positive correlation was noted between the SUVmax and the mean HU on malignant lesions with no statistical significance (p=0.394 and 0.312, respectively). The cutoff values obtained were 10.8 for SUVmax (82.6% sensitivity and 84.2% specificity) and 240.86 for the mean HU (98.7% sensitivity and 88.1% specificity) in differentiating benign from malignant bone lesions.
CONCLUSIONS: Semiquantitative assessment using SUVmax and HU can complement qualitative analysis. Metastatic lesions had higher SUVmax but lower mean HU than benign lesions, whereas benign lesions demonstrated higher mean HU but lower SUVmax. A weak correlation was found between the SUVmax and the mean HU on malignant and benign lesions. Cutoff values of 10.8 for the SUVmax and 240.86 for the mean HU may differentiate bone metastases from benign lesions.
METHODS: Of 84 screened participants, 60 asymptomatic healthy Asian population (38 females; 24.0 ± 1.5 years; 23.8 ± 2.6 kg/m2) were recruited in this 2 × 2 (AB/BA) crossover trial. Participants were randomized to a 4-h GES with 99mTc-radiolabeled EWM (~255.8 kcal), followed by a 200 mL Vital® (300 kcal), or vice versa, separated by a 2-week washout period. Global meal retention (GMR), power-exponential model emptying parameters (half-emptying [T1/2], lag phases [Tlag2%, Tlag5%, Tlag10%]), and IMD0h were determined and compared.
RESULTS: GMRs for both test meals were within the international standard references for solid GES. Compared to EWM, Vital® exhibited significantly lower GMRs (faster emptying) from 0.5 to 3 h (all P