Displaying all 5 publications

Abstract:
Sort:
  1. Surendran A, Siddiqui Y, Ahmad K, Fernanda R
    Plants (Basel), 2021 Aug 28;10(9).
    PMID: 34579330 DOI: 10.3390/plants10091797
    The threat of Ganoderma boninense, the causal agent of basal stem rot disease, in the oil palm industry warrants finding an effective control for it. The weakest link in the disease management strategy is the unattended stumps/debris in the plantations. Hence, this study aimed to determine whether the selected phenolic compounds could control G. boninense in inoculated oil palm woodblocks and restrict wood biodegradation. Results indicated a significant reduction in the wood mass loss when treated with all the phenolic compounds. Surprisingly, syringic and vanillic acids behaved ambivalently; at a lower concentration, the wood mass loss was increased, but it decreased as the concentrations were increased. In all four phenolic compounds, the inhibition of mass loss was dependent on the concentration of the compounds. After 120 days, the mass loss was only 31%, with 63% relative degradation of lignin and cellulose, and 74% of hemicellulose and wood anatomy, including silica bodies, were intact in those woodblocks treated with 1 mM benzoic acid. This study emphasizes the physicochemical and anatomical changes occurring in the oil palm wood during G. boninense colonization, and suggests that treating oil palm stumps with benzoic acid could be a solution to reducing the G. boninense inoculum pressure during replantation in a sustainable manner.
  2. Surendran A, Siddiqui Y, Ali NS, Manickam S
    J Appl Microbiol, 2018 Jun;124(6):1544-1555.
    PMID: 29405525 DOI: 10.1111/jam.13717
    AIM: Ganoderma sp, the causal pathogen of the basal stem rot (BSR) disease of oil palm, secretes extracellular hydrolytic enzymes. These play an important role in the pathogenesis of BSR by nourishing the pathogen through the digestion of cellulose and hemicellulose of the host tissue. Active suppression of hydrolytic enzymes secreted by Ganoderma boninense by various naturally occurring phenolic compounds and estimation of their efficacy on pathogen suppression is focused in this study.

    METHODS AND RESULTS: Ten naturally occurring phenolic compounds were assessed for their inhibitory effect on the hydrolytic enzymes of G. boninense. The enzyme kinetics (Vmax and Km ) and the stability of the hydrolytic enzymes were also characterized. The selected compounds had shown inhibitory effect at various concentrations. Two types of inhibitions namely uncompetitive and noncompetitive were observed in the presence of phenolic compounds. Among all the phenolic compounds tested, benzoic acid was the most effective compound suppressive to the growth and production of hydrolytic enzymes secreted by G. boninense. The phenolic compounds as inhibitory agents can be a better replacement for the metal ions which are known as conventional inhibitors till date. The three hydrolytic enzymes were stable in a wide range of pH and temperature.

    CONCLUSION: These findings highlight the efficacy of the applications of phenolic compounds to control Ganoderma.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The study has proved a replacement for chemical controls of G. boninense with naturally occurring phenolic compounds.

  3. Siddiqui Y, Surendran A, Paterson RRM, Ali A, Ahmad K
    Saudi J Biol Sci, 2021 May;28(5):2840-2849.
    PMID: 34012325 DOI: 10.1016/j.sjbs.2021.02.016
    The rapid expansion of oil palm (OP) has led to its emergence as a commodity of strategic global importance. Palm oil is used extensively in food and as a precursor for biodiesel. The oil generates export earnings and bolsters the economy of many countries, particularly Indonesia and Malaysia. However, oil palms are prone to basal stem rot (BSR) caused by Ganoderma boninense which is the most threatening disease of OP. The current control measures for BSR management including cultural practices, mechanical and chemical treatment have not proved satisfactory. Alternative control measures to overcome the G. boninense problem are focused on the use of biological control agents and many potential bioagents were identified with little proven practical application. Planting OP varieties resistant to G. boninense could provide the ideal long-term solution to basal stem rot. The total resistance of palms to G. boninense has not yet been reported, and few examples of partial resistances have been observed. Importantly, basidiospores are now recognized as the method by which the disease is spread, and control methods require to be revaluated because of this phenomenon. Many methods developed to prevent the spread of the disease effectively are only tested at nursery levels and are only reported in national journals inhibiting the development of useful techniques globally. The initial procedures employed by the fungus to infect the OP require consideration in terms of the physiology of the growth of the fungus and its possible control. This review assesses critically the progress that has been made in BSR development and management in OP.
  4. Surendran A, Siddiqui Y, Saud HM, Ali NS, Manickam S
    J Appl Microbiol, 2018 Sep;125(3):876-887.
    PMID: 29786938 DOI: 10.1111/jam.13922
    AIM: Lignolytic (lignin degrading) enzyme, from oil palm pathogen Ganoderma boninense Pat. (Syn G. orbiforme (Ryvarden)), is involved in the detoxification and the degradation of lignin in the oil palm and is the rate-limiting step in the infection process of this fungus. Active inhibition of lignin-degrading enzymes secreted by G. boninense by various naturally occurring phenolic compounds and estimation of efficiency on pathogen suppression was aimed at.

    METHODS AND RESULTS: In our work, 10 naturally occurring phenolic compounds were evaluated for their inhibitory potential towards the lignolytic enzymes of G. boninense. Additionally, the lignin-degrading enzymes were characterized. Most of the peholic compounds exhibited an uncompetitive inhibition towards the lignin-degrading enzymes. Benzoic acid was the superior inhibitor to the production of lignin-degrading enzymes, when compared between the 10 phenolic compounds. The inhibitory potential of the phenolic compounds towards the lignin-degrading enzymes are higher than that of the conventional metal ion inhibitor. The lignin-degrading enzymes were stable in a wide range of pH but were sensitive to higher temperature.

    CONCLUSION: The study demonstrated the inhibitor potential of 10 naturally occurring phenolic compounds towards the lignin-degrading enzymes of G. boninense with different efficacies.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The study has shed a light towards a new management strategy to control basal stem rot disease in oil palm. It serves as a replacement for the existing chemical control.

  5. Go WZ, Chin KL, H'ng PS, Wong MY, Luqman CA, Surendran A, et al.
    Plants (Basel), 2021 Oct 07;10(10).
    PMID: 34685932 DOI: 10.3390/plants10102123
    Latex production from Hevea brasiliensis rubber tree is the second most important commodity in Malaysia, but this industry is threatened by the white root rot disease (WRD) caused by Rigidoporus microporus that leads to considerable latex yield loss and tree death. This study aimed to characterize and compare the virulence of five R. microporus isolates obtained from infected rubber trees located at different states in Malaysia. These isolates were subjected to morphological and molecular characterization for species confirmation and pathogenicity test for the determination of virulence level. BLAST search showed that the ITS sequences of all the pathogen isolates were 99% identical to R. microporus isolate SEG (accession number: MG199553) from Malaysia. The pathogenicity test of R. microporus isolates conducted in a nursery with 24 seedlings per isolate showed that isolate RL21 from Sarawak has developed the most severe above- and below-ground symptoms of WRD on the rubber clone RRIM600 as host. Six months after being infected with R. microporus, RL21 was evaluated with the highest average of disease severity index of 80.52% for above- and below-ground symptoms, followed by RL22 (68.65%), RL20 (66.04%), RL26 (54.38%), and RL25 (43.13%). The in vitro growth condition tests showed that isolate RL21 of R. microporus has optimum growth at 25-30 °C, with the preference of weakly acidic to neutral environments (pH 6-7). This study revealed that different virulence levels are possessed among different R. microporus isolates even though they were isolated from the same host species under the same climate region. Taken together, field evaluation through visual observation and laboratory assays have led to screening of the most virulent isolate. Determination of the most virulent isolate in the present study is vital and shall be taken into consideration for the selection of suitable pathogen isolate in the development of more effective control measures in combating tenacious R. microporus.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links