Displaying all 6 publications

Abstract:
Sort:
  1. Hu Y, Xie Y, Su Q, Fu J, Chen J, Liu Y
    Foodborne Pathog Dis, 2023 Nov;20(11):521-530.
    PMID: 37722019 DOI: 10.1089/fpd.2023.0039
    The human gut flora is highly diverse. Most lactic acid bacteria (LAB) are widely used as probiotics in human and animal husbandry and have a variety of physiological benefits. This article mainly studied the bacteriostatic ability of LAB against four pathogenic bacteria, gastrointestinal environment tolerance, and adhesion ability to Caco-2 cells. The genome of Lactiplantibacillus plantarum L461 was sequenced and analyzed. The results showed that strains F512, L461, and D469 had the most significant inhibitory effects on Escherichia coli, Salmonella enterica B, Staphylococcus aureus, and Listeria monocytogenes. In addition, strains L461, C502, and P231 showed good tolerance after exposure to simulated gastric fluid for 0-4 h. Strains C502, H781, and L461 showed good tolerance in simulated intestinal fluid. Strains L461 and H781 showed good adhesion to Caco-2 cells. The number of viable bacteria was more than 60. Therefore, we screened L. plantarum L461 from 12 LAB strains through three aspects of evaluation, and conducted whole genome sequencing and analysis. Sequencing results showed that L. plantarum L461 had more defense mechanisms and phage annotation genes than L. plantarum WCFS1. Virulence factor studies showed that L. plantarum L461 has iron absorption system and adhesion-related gene annotation, indicating that L. plantarum L461 has survival advantage in intestinal tract. The predicted results showed that there were eight phages with phage resistance in L. plantarum L461. L. plantarum L461 is sensitive to several antibiotics, notably penicillin and oxacillin. In summary, the results of this study prove that L. plantarum L461 has good prebiotic function and is safe. Therefore, L. plantarum L461 can be safely used as a potential functional probiotic.
  2. Ullah A, Leong SW, Wang J, Wu Q, Ghauri MA, Sarwar A, et al.
    Cell Death Dis, 2021 05 14;12(5):490.
    PMID: 33990544 DOI: 10.1038/s41419-021-03771-z
    Lung cancer (LC) is one of the leading causes of cancer-related death. As one of the key features of tumor microenvironment, hypoxia conditions are associated with poor prognosis in LC patients. Upregulation of hypoxic-induced factor-1α (HIF-1α) leads to the activation of various factors that contribute to the increased drug resistance, proliferation, and migration of tumor cells. Apurinic/apyrimidinic endonuclease-1 (APEX1) is a multi-functional protein that regulates several transcription factors, including HIF-1α, that contribute to tumor growth, oxidative stress responses, and DNA damage. In this study, we explored the mechanisms underlying cell responses to hypoxia and modulation of APEX1, which regulate HIF-1α and downstream pathways. We found that hypoxia-induced APEX1/HIF-1α pathways regulate several key cellular functions, including reactive oxygen species (ROS) production, carbonic anhydrase 9 (CA9)-mediated intracellular pH, migration, and angiogenesis. Cephalomannine (CPM), a natural compound, exerted inhibitory effects in hypoxic LC cells via the inhibition of APEX1/HIF-1α interaction in vitro and in vivo. CPM can significantly inhibit cell viability, ROS production, intracellular pH, and migration in hypoxic LC cells as well as angiogenesis of HUVECs under hypoxia through the inhibition of APEX1/HIF-1α interaction. Taken together, CPM could be considered as a promising compound for LC treatment.
  3. Leong SW, Wang J, Okuda KS, Su Q, Zhang Y, Abas F, et al.
    Eur J Med Chem, 2023 Apr 20;254:115335.
    PMID: 37098306 DOI: 10.1016/j.ejmech.2023.115335
    Unpleasant side effects and resistance development remained the Achilles heel of chemotherapy. Since low tumor-selectivity and monotonous effect of chemotherapy are closely related to such bottleneck, targeting tumor-selective multi-functional anticancer agents may be an ideal strategy in the search of new safer drugs. Herein, we report the discovery of compound 21, a nitro-substituted 1,5-diphenyl-3-styryl-1H-pyrazole that possesses dual functional characteristics. The 2D- and 3D-culture-based studies revealed that 21 not only could induce ROS-independent apoptotic and EGFR/AKT/mTOR-mediated autophagic cell deaths in EJ28 cells simultaneously but also has the ability in inducing cell death at both proliferating and quiescent zones of EJ28 spheroids. The molecular modelling analysis showed that 21 possesses EGFR targeting capability as it forms stable interactions in the EGFR active site. Together with its good safety profile in the zebrafish-based model, the present study showed that 21 is promising and may lead to the discovery of tumor-selective multi-functional anti-cancer agents.
  4. Su Q, Ren J, Chen K, Leong SW, Han X, Li N, et al.
    J Pharm Pharmacol, 2024 Sep 11.
    PMID: 39258498 DOI: 10.1093/jpp/rgae110
    OBJECTIVES: Hypoxia conditions promote the adaptation and progression of non-small-cell lung cancer (NSCLC) via hypoxia-inducible factors (HIF). HIF-1α may regulate estrogen receptor β (ERβ) and promote the progression of NSCLC. The phytochemical homoharringtonine (HHT) exerts strong inhibitory potency on NSCLC, with molecular mechanism under hypoxia being elusive.

    METHODS: The effects of HHT on NSCLC growth were determined by cell viability assay, colony formation, flow cytometry, and H460 xenograft models. Western blotting, molecular docking program, site-directed mutagenesis assay, immunohistochemical assay, and immunofluorescence assay were performed to explore the underlying mechanisms of HHT-induced growth inhibition in NSCLC.

    KEY FINDINGS: HIF-1α/ERβ signaling-related E2F1 is highly expressed and contributes to unfavorable survival and tumor growth. The findings in hypoxic cells, HIF-1α overexpressing cells, as well as ERβ- or E2F1-overexpressed and knockdown cells suggest that the HIF-1α/ERβ/E2F1 feedforward loop promotes NSCLC cell growth. HHT suppresses HIF-1α/ERβ/E2F1 signaling via the ubiquitin-proteasome pathway, which is dependent on the inhibition of the protein expression of HIF-1α and ERβ. Molecular docking and site-directed mutagenesis revealed that HHT binds to the GLU305 site of ERβ. HHT inhibits cell proliferation and colony formation and promotes apoptosis in both NSCLC cells and xenograft models.

    CONCLUSION: The formation of the HIF-1α/ERβ/E2F1 feedforward loop promotes NSCLC growth and reveals a novel molecular mechanism by which HHT induces cell death in NSCLC.

  5. Su Q, Chen K, Ren J, Zhang Y, Han X, Leong SW, et al.
    J Mol Med (Berl), 2024 Dec;102(12):1471-1484.
    PMID: 39420137 DOI: 10.1007/s00109-024-02496-8
    Non-small cell lung cancer (NSCLC) is a highly malignant tumor with a poor prognosis. Hypoxia conditions affect multiple cellular processes promoting the adaptation and progression of cancer cells via the activation of hypoxia-inducible factors (HIF) and subsequent transcription activation of their target genes. Preliminary studies have suggested that estrogen receptor β (ERβ) might play a promoting role in the progression of NSCLC. However, the precise mechanisms, particularly its connection to HIF-1α-mediated modulation under hypoxia, remain unclear. Our findings demonstrated that the overexpression of ERβ, not ERα, increased cell proliferation and inhibition of apoptosis in NSCLC cells and xenografts. Tissue microarray staining revealed a strong correlation between the protein expression of HIF-1α and ERβ. HIF-1α induced ERβ gene transcription and protein expression in CoCl2-induced hypoxia, 1% O2 incubation, or HIF-1α overexpressing cells. ChIP identified HIF-1α binding to a hypoxia response element in the ESR2 promoter. The suppression of HIF-1α and ERβ both in vitro and in vivo effectively reduced the tumor growth, thus emphasizing the promising prospects of targeting HIF-1α and ERβ as a therapeutic approach for the treatment of NSCLC. KEY MESSAGES: ERβ, not ERα, increases cell proliferation and inhibition of apoptosis in NSCLC cells and xenografts. A strong correlation exists between the protein expression of HIF-1α and ERβ. HIF-1α induced ERβ gene transcription and protein expression in hypoxic cells via binding to HRE in the ESR2 promoter. The suppression of HIF-1α and ERβ both in vitro and in vivo effectively reduced the NSCLC tumor growth.
  6. Su Q, Wang JJ, Ren JY, Wu Q, Chen K, Tu KH, et al.
    Acta Pharmacol Sin, 2024 Mar 22.
    PMID: 38519646 DOI: 10.1038/s41401-024-01254-3
    Parkin (PARK2) deficiency is frequently observed in various cancers and potentially promotes tumor progression. Here, we showed that Parkin expression is downregulated in liver cancer tissues, which correlates with poor patient survival. Parkin deficiency in liver cancer cells promotes migration and metastasis as well as changes in EMT and metastasis markers. A negative correlation exists between TMEFF1 and Parkin expression in liver cancer cells and tumor tissues. Parkin deficiency leads to upregulation of TMEFF1 which promotes migration and metastasis. TMEFF1 transcription is activated by Parkin-induced endogenous TGF-β production and subsequent phosphorylation of Smad2/3 and its binding to TMEFF1 promotor. TGF-β inhibitor and TMEFF1 knockdown can reverse shParkin-induced cell migration and changes of EMT markers. Parkin interacts with and promotes the ubiquitin-dependent degradation of HIF-1α/HIF-1β and p53, which accounts for the suppression of TGF-β production. Our data have revealed that Parkin deficiency in cancer leads to the activation of the TGF-β/Smad2/3 pathway, resulting in the expression of TMEFF1 which promotes cell migration, EMT, and metastasis in liver cancer cells.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links