A search for the standard model (SM) Higgs boson (H) produced with transverse momentum (p_{T}) greater than 450 GeV and decaying to a charm quark-antiquark (cc[over ¯]) pair is presented. The search is performed using proton-proton collision data collected at sqrt[s]=13 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb^{-1}. Boosted H→cc[over ¯] decay products are reconstructed as a single large-radius jet and identified using a deep neural network charm tagging technique. The method is validated by measuring the Z→cc[over ¯] decay process, which is observed in association with jets at high p_{T} for the first time with a signal strength of 1.00_{-0.14}^{+0.17}(syst)±0.08(theo)±0.06(stat), defined as the ratio of the observed process rate to the SM expectation. The observed (expected) upper limit on σ(H)B(H→cc[over ¯]) is set at 47 (39) times the SM prediction at 95% confidence level.
New sets of parameter tunes for two of the colour reconnection models, quantum chromodynamics-inspired and gluon-move, implemented in the pythia 8 event generator, are obtained based on the default CMS pythia 8 underlying-event tune, CP5. Measurements sensitive to the underlying event performed by the CMS experiment at centre-of-mass energies s=7 and 13TeV, and by the CDF experiment at 1.96TeV are used to constrain the parameters of colour reconnection models and multiple-parton interactions simultaneously. The new colour reconnection tunes are compared with various measurements at 1.96, 7, 8, and 13TeV including measurements of the underlying-event, strange-particle multiplicities, jet substructure observables, jet shapes, and colour flow in top quark pair (tt¯) events. The new tunes are also used to estimate the uncertainty related to colour reconnection modelling in the top quark mass measurement using the decay products of tt¯ events in the semileptonic channel at 13TeV.