Displaying all 5 publications

Abstract:
Sort:
  1. Xiu L, Binder RA, Alarja NA, Kochek K, Coleman KK, Than ST, et al.
    J Clin Virol, 2020 07;128:104391.
    PMID: 32403008 DOI: 10.1016/j.jcv.2020.104391
    BACKGROUND: During the past two decades, three novel coronaviruses (CoVs) have emerged to cause international human epidemics with severe morbidity. CoVs have also emerged to cause severe epidemics in animals. A better understanding of the natural hosts and genetic diversity of CoVs are needed to help mitigate these threats.

    OBJECTIVE: To design and evaluate a molecular diagnostic tool for detection and identification of all currently recognized and potentially future emergent CoVs from the Orthocoronavirinae subfamily.

    STUDY DESIGN AND RESULTS: We designed a semi-nested, reverse transcription RT-PCR assay based upon 38 published genome sequences of human and animal CoVs. We evaluated this assay with 14 human and animal CoVs and 11 other non-CoV respiratory viruses. Through sequencing the assay's target amplicon, the assay correctly identified each of the CoVs; no cross-reactivity with 11 common respiratory viruses was observed. The limits of detection ranged from 4 to 4 × 102 copies/reaction, depending on the CoV species tested. To assess the assay's clinical performance, we tested a large panel of previously studied specimens: 192 human respiratory specimens from pneumonia patients, 5 clinical specimens from COVID-19 patients, 81 poultry oral secretion specimens, 109 pig slurry specimens, and 31 aerosol samples from a live bird market. The amplicons of all RT-PCR-positive samples were confirmed by Sanger sequencing. Our assay performed well with all tested specimens across all sample types.

    CONCLUSIONS: This assay can be used for detection and identification of all previously recognized CoVs, including SARS-CoV-2, and potentially any emergent CoVs in the Orthocoronavirinae subfamily.

  2. Wang X, Xiu L, Binder RA, Toh TH, Lee JS, Ting J, et al.
    One Health, 2021 Dec;13:100274.
    PMID: 34124332 DOI: 10.1016/j.onehlt.2021.100274
    We examined a collection of 386 animal, 451 human, and 109 archived bioaerosol samples with a new pan-species coronavirus molecular assay. Thirty-eight (4.02%) of 946 specimens yielded evidence of human or animal coronaviruses. Our findings demonstrate the utility of employing the pan-CoV RT-PCR assay in detecting varied coronavirus among human, animal, and environmental specimens. This RT-PCR assay might be employed as a screening diagnostic for early detection of coronaviruses incursions or prepandemic coronavirus emergence in animal or human populations.
  3. Fieldhouse JK, Bailey ES, Toh TH, Hii KC, Mallinson KA, Ting J, et al.
    PMID: 32817802 DOI: 10.1186/s40794-020-00114-2
    Background: In a year-long pneumonia etiology study conducted June 2017 to May 2018 in Sarawak, Malaysia, 599 patients' nasopharyngeal swab specimens were studied with real-time polymerase chain reaction (rPCR)/ reverse-transcription (rRT-PCR) assays for respiratory pathogens known to contribute to the high burden of lower respiratory tract infections. The study team sought to compare real-time assay results with panspecies conventional molecular diagnostics to compare sensitivities and learn if novel viruses had been missed.

    Methods: Specimens were studied for evidence of adenovirus (AdV), enterovirus (EV) and coronavirus (CoV) with panspecies gel-based nested PCR/RT-PCR assays. Gene sequences of specimens positive by panspecies assays were sequenced and studied with the NCBI Basic Local Alignment Search Tool software.

    Results: There was considerable discordance between real-time and conventional molecular methods. The real-time AdV assay found a positivity of 10.4%; however, the AdV panspecies assay detected a positivity of 12.4% and the conventional AdV-Hexon assay detected a positivity of 19.6%. The CoV and EV panspecies assays similarly detected more positive specimens than the real-time assays, with a positivity of 7.8% by the CoV panspecies assay versus 4.2% by rRT-PCR, and 8.0% by the EV panspecies assay versus 1.0% by rRT-PCR. We were not able to ascertain virus viability in this setting. While most discordance was likely due to assay sensitivity for previously described human viruses, two novel, possible zoonotic AdV were detected.

    Conclusions: The observed differences in the two modes of amplification suggest that where a problem with sensitivity is suspected, real-time assay results might be supplemented with panspecies conventional PCR/RT-PCR assays.

  4. Min J, Son T, Hong JS, Cheah PS, Wegemann A, Murlidharan K, et al.
    Adv Biosyst, 2020 12;4(12):e2000003.
    PMID: 32815321 DOI: 10.1002/adbi.202000003
    Extracellular vesicles (EVs)-nanoscale phospholipid vesicles secreted by cells-present new opportunities for molecular diagnosis from non-invasive liquid biopsies. Single EV protein analysis can be extremely valuable in studying EVs as circulating cancer biomarkers, but it is technically challenging due to weak detection signals associated with limited amounts of epitopes and small surface areas for antibody labeling. Here, a new, simple method that enables multiplexed analyses of EV markers with improved sensitivities is reported. Specifically, plasmon-enhanced fluorescence detection is implemented that amplifies fluorescence signals using surface plasmon resonances excited by periodic gold nanohole structures. It is shown that fluorescence signals in multiple channels are amplified by one order of magnitude, and both transmembrane and intravesicular markers can be detected at the single EV level. This approach can offer additional insight into understanding subtypes, heterogeneity, and production dynamics of EVs during disease development and progression.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links