Displaying all 6 publications

Abstract:
Sort:
  1. Ishak MR, Sapuan SM, Leman Z, Rahman MZ, Anwar UM, Siregar JP
    Carbohydr Polym, 2013 Jan 16;91(2):699-710.
    PMID: 23121967 DOI: 10.1016/j.carbpol.2012.07.073
    Sugar palm (Arenga pinnata) is a multipurpose palm species from which a variety of foods and beverages, timber commodities, biofibres, biopolymers and biocomposites can be produced. Recently, it is being used as a source of renewable energy in the form of bio-ethanol via fermentation process of the sugar palm sap. Although numerous products can be produced from sugar palm, three products that are most prominent are palm sugar, fruits and fibres. This paper focuses mainly on the significance of fibres as they are highly durable, resistant to sea water and because they are available naturally in the form of woven fibre they are easy to process. Besides the recent advances in the research of sugar palm fibres and their composites, this paper also addresses the development of new biodegradable polymer derived from sugar palm starch, and presents reviews on fibre surface treatment, product development, and challenges and efforts on properties enhancement of sugar palm fibre composites.
  2. Junid R, Siregar JP, Endot NA, Razak JA, Wilkinson AN
    Polymers (Basel), 2021 Sep 27;13(19).
    PMID: 34641120 DOI: 10.3390/polym13193304
    The aim of this work was to improve the processability of triglycidyl-p-aminophenol (TGPAP) epoxy resin. To achieve this improvement, a diluent, the diglycidyl ether of bisphenol F (DGEBF or BPF), was added to TGPAP, and the blended epoxy was then cured with 4, 4'-diaminodiphenyl sulfones (DDS). A response surface methodology (RSM) was used, with the target response being to achieve a blended resin with a high glass transition temperature (Tg) and maximum pot life (or processing window, PW). Characterization through dynamic mechanical thermal analysis (DMTA) and using a rheometer indicated that the optimum formulation was obtained at 55.6 wt.% of BPF and a stoichiometric ratio of 0.60. Both values were predicted to give Tg at 180 °C and a processing window of up to 136.1 min. The predicted values were verified, with the obtained Tg and processing window (PW) being 181.2 ± 0.8 °C and 140 min, respectively, which is close to the values predicted using the RSM.
  3. Hadi AE, Hamdan MHM, Siregar JP, Junid R, Tezara C, Irawan AP, et al.
    Polymers (Basel), 2021 Aug 01;13(15).
    PMID: 34372175 DOI: 10.3390/polym13152572
    Woven laminated composite has gained researchers' and industry's interest over time due to its impressive mechanical performance compared to unidirectional composites. Nevertheless, the mechanical properties of the woven laminated composite are hard to predict. There are many micromechanical models based on unidirectional composite but limited to the woven laminated composite. The current research work was conducted to evaluate elastic moduli of hybrid jute-ramie woven reinforced unsaturated polyester composites using micromechanical effectiveness unidirectional models, such as ROM, IROM, Halpin-Tsai, and Hirsch, which are based on stiffness. The hybrid jute-ramie laminated composite was fabricated with different layering sizes, and the stacking sequence was completed via hand lay-up with the compression machine. Tensile modulus values for hybrid composites are between those for single jute and single ramie. Obtained p-values less than 0.05 prove the relationship between layering size and tensile modulus. This study showed that several micromechanical models, such as Halpin-Tsai's predicted value of homogenized mechanical properties, were in good agreement with the experimental result. In the case of the hybrid composite, the micromechanical model deviates from the experimental result. Several modifications are required to improve the current existing model. A correlation function was calculated based on the differences between the elastic modulus values determined experimentally and those derived from each micromechanical model calculation.
  4. Rihayat T, Hadi AE, Aidy N, Safitri A, Siregar JP, Cionita T, et al.
    Polymers (Basel), 2021 Nov 20;13(22).
    PMID: 34833315 DOI: 10.3390/polym13224019
    This study aims to produce and investigate the potential of biodegradable Polylactic Acid (PLA)-based composites mixed with chitosan and Turmeric Essential Oil (TEO) as an anti-microbial biomaterial. PLA has good barrier properties for moisture, so it is suitable for use as a raw material for making packaging and is included in the GRAS (Generally Recognized As Safe). Chitosan is a non-toxic and antibacterial cationic polysaccharide that needs to be improved in its ability to fight microbes. TEO must be added to increase antibacterial properties due to a large number of hydroxyl (-OH) and carbonyl functional groups. The samples were prepared in three different variations: 2 g of chitosan, 0 mL TEO and 0 mL glycerol (Biofilm 1), 3 g of chitosan, 0.3 mL TEO and 0.5 mL of glycerol (Biofilm 2), and 4 g of chitosan, 0.3 of TEO and 0.5 mL of glycerol (Biofilm 3). The final product was characterized by its functional group through Fourier transform infrared (FTIR); the functional groups contained by the addition of TEO are C-H, C=O, O-H, and N-H with the extraction method, and as indicated by the emergence of a wide band at 3503 cm-1, turmeric essential oil interacts with the polymer matrix by creating intermolecular hydrogen bonds between their terminal hydroxyl group and the carbonyl groups of the ester moieties of both PLA and Chitosan. Thermogravimetric analysis (TGA) of PLA as biofilms, the maximum temperature of a biofilm was observed at 315.74 °C in the variation of 4 g chitosan, 0.3 mL TEO, and 0.5 mL glycerol (Biofilm 3). Morphological conditions analyzed under scanning electron microscopy (SEM) showed that the addition of TEO inside the chitosan interlayer bound chitosan molecules to produce solid particles. Chitosan and TEO showed increased anti-bacterial activity in the anti-microbial test. Furthermore, after 12 days of exposure to open areas, the biofilms generated were able to resist S. aureus and E. coli bacteria.
  5. Tezara C, Hadi AE, Siregar JP, Muhamad Z, Hamdan MHM, Oumer AN, et al.
    Polymers (Basel), 2021 Aug 31;13(17).
    PMID: 34503004 DOI: 10.3390/polym13172964
    Recently, the most critical issue related to the use of natural fibre-reinforced polymer composites (NFRPC) is the degradation properties of composites exposed to the environment. NFRPC's moisture absorption behaviour has adverse effects on the composite's mechanical properties and dimensional stability. The purpose of this study is to analyse the mechanical properties of epoxy composites reinforced by jute-ramie hybridisation. This study also analysed the effect of stacking sequence hybridisation of the jute-ramie composite on water absorption behaviour. A five-layer different type of stacking sequence of single and hybrid jute-ramie is produced with the hand lay-up method. The results obtained from this study found that the mechanical properties and water absorption behaviour of a single jute fibre are lower compared to a single ramie fibre. The hybrid of jute-ramie has been able to increase the performance of composite compared to pure jute composites. The mechanical properties of the hybrid jute-ramie composite show a reduction effect after exposure to an aqueous environment due to the breakdown of fibre matrix interfacial bonding. However, after 28 days of immersion, all types of the stacking sequence's mechanical properties are still higher than that of pure epoxy resin. In conclusion, the appropriate sequence of stacking and selecting the material used are two factors that predominantly affect the mechanical properties and water absorption behaviour. The hybrid composites with the desired and preferable properties can be manufactured using a hand-lay-up technique and used in the various industrial applications.
  6. Ismail R, Cionita T, Lai YL, Fitriyana DF, Siregar JP, Bayuseno AP, et al.
    Materials (Basel), 2022 Dec 04;15(23).
    PMID: 36500143 DOI: 10.3390/ma15238641
    Recently, there has been an increase in the number of studies conducted on the process of developing hydroxyapatite (HA) to use in biocomposites. HA can be derived from natural sources such as bovine bone. The HA usage obtained from green mussel shells in biocomposites in this study will be explored. The research goal is to investigate the composition effect of biomaterials derived from polycaprolactone (PCL), polylactic acid (PLA), as well as HA obtained from green mussel shells with a chemical blending method on mechanical properties and degradation rate. First, 80 mL of chloroform solution was utilized to immerse 16 g of the PLA/PCL mixture with the ratios of 85:15 and 60:40 for 30 min. A magnetic stirrer was used to mix the solution for an additional 30 min at a temperature and speed of 50 °C and 300 rpm. Next, the hydroxyapatite (HA) was added in percentages of 5%, 10%, and 15%, as well as 20% of the PLA/PCL mixture's total weight. It was then stirred for 1 h at 100 rpm at 65 °C to produce a homogeneous mixture of HA and polymer. The biocomposite mixture was then added into a glass mold as per ASTM D790. Following this, biocomposite specimens were tested for their density, biodegradability, and three points of bending in determining the effect of HA and polymer composition on the degradation rate and mechanical properties. According to the findings of this study, increasing the HA and PLA composition yields a rise in the mechanical properties of the biocomposites. However, the biocomposite degradation rate is increasing.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links