Displaying all 11 publications

Abstract:
Sort:
  1. Khan MN, Sim YL, Ariffin A
    ScientificWorldJournal, 2014;2014:592691.
    PMID: 24574900 DOI: 10.1155/2014/592691
    The values of pseudo-first-order rate constants (k(obs)) for alkaline hydrolysis of 1, obtained at 1.0 mM NaOH and within [C(m)E(n)]T (total concentration of C(m)E(n)) range of 3.0-5.0 mM for C(12)E(23) and 10-20 mM for C(18)E(20), fail to obey pseudophase micellar (PM) model. The values of the fraction of near irreversible C m E n micellar trapped 1 molecules (F(IT1)) vary in the range ~0-0.75 for C(12)E(23) and ~0-0.83 for C(18)E(20) under such conditions. The values of F(IT1) become 1.0 at ≥ 10 mM C(12)E(23) and 50 mM C(18)E(20). Kinetic analysis of the observed data at ≥ 10 mM C(12)E(23) shows near irreversible micellar entrapment of 1 molecules under such conditions.
  2. Sim YL, Ariffin A, Khan MN
    Bioorg Chem, 2008 Aug;36(4):178-82.
    PMID: 18440044 DOI: 10.1016/j.bioorg.2008.03.003
    The rate of conversion of 1 to N-(2-methoxyphenyl)phthalimide (2) within [HCl] range 5.0x10(-3)-1.0 M at 1.0M ionic strength (by NaCl) reveals the presence of both uncatalyzed and specific acid-catalyzed kinetic terms in the rate law. Intramolecular carboxamide group-assisted cleavage of amide bond of 1 reveals rate enhancement of much larger than 10(6)-fold compared to the expected rate of analogous intermolecular reaction.
  3. Sim YL, Ariffin A, Ng SW
    PMID: 21202577 DOI: 10.1107/S1600536808013548
    The title mol-ecule, C(11)H(11)NO(3), lies on a crystallographic mirror plane which bis-ects the plane of the phthalimide unit and contains the C and O atoms of the 2-methoxy-ethyl group.
  4. Sim YL, Ariffin A, Khan MN
    J Org Chem, 2008 May 16;73(10):3730-7.
    PMID: 18410141 DOI: 10.1021/jo702695k
    The apparent second-order rate constant (k OH) for hydroxide-ion-catalyzed conversion of 1 to N-(2'-methoxyphenyl)phthalamate (4) is approximately 10(3)-fold larger than k OH for alkaline hydrolysis of N-morpholinobenzamide (2). These results are explained in terms of the reaction scheme 1 --> k(1obs) 3 --> k(2obs) 4 where 3 represents N-(2'-methoxyphenyl)phthalimide and the values of k(2obs)/k(1obs) vary from 6.0 x 10(2) to 17 x 10(2) within [NaOH] range of 5.0 x 10(-3) to 2.0 M. Pseudo-first-order rate constants (k(obs)) for alkaline hydrolysis of 1 decrease from 21.7 x 10(-3) to 15.6 x 10(-3) s(-1) with an increase in ionic strength (by NaCl) from 0.5 to 2.5 M at 0.5 M NaOH and 35 degrees C. The values of k obs, obtained for alkaline hydrolysis of 2 within [NaOH] range 1.0 x 10(-2) to 2.0 M at 35 degrees C, follow the relationship k(obs) = kOH[HO(-)] + kOH'[HO (-)] (2) with least-squares calculated values of kOH and kOH' as (6.38 +/- 0.15) x 10(-5) and (4.59 +/- 0.09) x 10(-5) M (-2) s(-1), respectively. A few kinetic runs for aqueous cleavage of 1, N'-morpholino-N-(2'-methoxyphenyl)-5-nitrophthalamide (5) and N'-morpholino-N-(2'-methoxyphenyl)-4-nitrophthalamide (6) at 35 degrees C and 0.05 M NaOH as well as 0.05 M NaOD reveal the solvent deuterium kinetic isotope effect (= k(obs) (H 2) (O)/ k(obs) (D 2 ) (O)) as 1.6 for 1, 1.9 for 5, and 1.8 for 6. Product characterization study on the cleavage of 5, 6, and N-(2'-methoxyphenyl)-4-nitrophthalimide (7) at 0.5 M NaOD in D2O solvent shows the imide-intermediate mechanism as the exclusive mechanism.
  5. Sim YL, Ariffin A, Khan MN
    J Org Chem, 2007 Oct 26;72(22):8452-8.
    PMID: 17918997
    A kinetic study on the aqueous cleavage of N-(2-methoxyphenyl)phthalimide (1) and N-(2-hydroxyphenyl)phthalimide (2), under the buffers of N-methylmorpholine, reveals the equilibrium presence of monocationic amide (Ctam) formed due to nucleophilic reactions of N-methylmorpholine with 1 and 2. Pseudo-first-order rate constants for the reactions of water and HO- with Ctam (formed through nucleophilic reaction of N-methylmorpholine with 1) are 4.60 x 10(-5) s-1 and 47.9 M-1 s-1, respectively. But the cleavage of Ctam, formed through nucleophilic reaction of N-methylmorpholine with 2, involves intramolecular general base (2'-O- group of Ctam)-assisted water attack at carbonyl carbon of cationic amide group of Ctam in or before the rate-determining step.
  6. Sim YL, Ariffin A, Khan MN
    J Org Chem, 2007 Mar 30;72(7):2392-401.
    PMID: 17341117
    The rates of the hydrolyses of N-(o-hydroxyphenyl)phthalimide (1) and N-(o-methoxyphenyl)phthalimide (2), studied at different pH, show that the hydrolysis of 1 involves intramolecular general base (IGB) assistance where the o-O- group of ionized 1 acts as IGB and H2O as the reactant. The rate enhancement due to the IGB-assisted reaction of H2O with ionized 1 is>8x10(4)-fold. Pseudo-first-order rate constant for the reaction of water with 2 is approximately 2x10(3)-fold smaller than the first-order rate constant (0.10 s-1) for pH-independent hydrolysis of 1 within the pH range of 9.60-10.10. Second-order rate constants (kOH) for hydroxide ion-assisted hydrolysis of ionized 1 and 2 are 3.0 and 29.1 M-1 s-1, respectively. The solvent deuterium kinetic isotope effect (dKIE) on the rate of alkaline hydrolysis of 1 and 2 reveals that the respective values of kOH/kOD are 0.84 and 0.78, where kOD represents the second-order rate constant for DO--assisted cleavage of these imides (1 and 2). The value of kwH2O/kdD2O is 2.04, with kwH2O and kdD2O representing pseudo-first-order rate constants for the reactions of ionized 1 with H2O and D2O, respectively.
  7. Sim YL, Yusof NS, Ariffin A, Niyaz Khan M
    J Colloid Interface Sci, 2011 Aug 1;360(1):182-8.
    PMID: 21549387 DOI: 10.1016/j.jcis.2011.04.021
    Pseudo-first-order rate constants (k(obs)) for alkaline hydrolysis of N-(2'-methoxyphenyl)phthalimide (1) decrease nonlinearly with increasing total concentration of nonionic surfactant C(m)E(n) (i.e. [C(m)E(n)](T) where m and n represent the respective number of methyl/methylene units in the tail and polyoxyethylene units in the headgroup of a surfactant molecule and m/n=16/20, 12/23 and 18/20) at constant 2% v/v CH(3)CN and 1.0 mM NaOH. The k(obs)vs. [C(m)E(n)](T) data follow the pseudophase micellar (PM) model at ≤ 50 mM C(16)E(20), ≤ 1.4 mM C(12)E(23) and ≤ 2.0 mM C(18)E(20) where rate of hydrolysis of 1 in micellar pseudophase could not be detected. The values of k(obs) fail to follow the PM model at > ∼50 mM C(16)E(20), > ∼1.4 mM C(12)E(23) and > ∼2.0 mM C(18)E(20) which has been attributed to a micellar structural transition from spherical to rodlike which in turn increases C(m)E(n) micellar binding constant (K(S)) of 1 with increasing values of [C(m)E(n)](T). Rheological measurements show the presence of spherical micelles at ≤ 50 mM C(16)E(20), ≤ 1.4 mM C(12)E(23) and ≤ 3.0 mM C(18)E(20). The presence of rodlike micelles is evident from rheological measurements at > ∼50 mM C(16)E(20), > ∼1.4 mM C(12)E(23) and > ∼3.0 mM C(18)E(20).
  8. Sim YL, Ariffin A, Khan MN, Ng SW
    PMID: 21577620 DOI: 10.1107/S1600536809032838
    The phthalimide fused-ring system and the phenyl-ene ring in the title compound, C(15)H(11)NO(3), are inclined at an angle of 60.0 (1)°.
  9. Sim YL, Ariffin A, Khan MN, Ng SW
    PMID: 21577619 DOI: 10.1107/S1600536809032826
    The phthalimide fused-ring system and the phenyl-ene ring in the title compound, C(15)H(11)NO(3), are inclined at an angle of 54.2 (1)°.
  10. Ooi CH, Cheah WK, Sim YL, Pung SY, Yeoh FY
    J Environ Manage, 2017 Jul 15;197:199-205.
    PMID: 28384613 DOI: 10.1016/j.jenvman.2017.03.083
    Urea removal is an important process in household wastewater purification and hemodialysis treatment. The efficiency of the urea removal can be improved by utilizing activated carbon fiber (ACF) for effective urea adsorption. In this study, ACF was prepared from oil palm empty fruit bunch (EFB) fiber via physicochemical activation using sulfuric acid as an activating reagent. Based on the FESEM result, ACF obtained after the carbonization and activation processes demonstrated uniform macropores with thick channel wall. ACF was found better prepared in 1.5:1 acid-to-EFB fiber ratio; where the pore size of ACF was analyzed as 1.2 nm in diameter with a predominant micropore volume of 0.39 cm(3) g(-1) and a BET surface area of 869 m(2) g(-1). The reaction kinetics of urea adsorption by the ACF was found to follow a pseudo-second order kinetic model. The equilibrium amount of urea adsorbed on ACF decreased from 877.907 to 134.098 mg g(-1) as the acid-to-fiber ratio increased from 0.75 to 4. During the adsorption process, the hydroxyl (OH) groups on ACF surface were ionized and became electronegatively charged due to the weak alkalinity of urea solution, causing ionic repulsion towards partially anionic urea. The ionic repulsion force between the electronegatively charged ACF surface and urea molecules became stronger when more OH functional groups appeared on ACF prepared at higher acid impregnation ratio. The results implied that EFB fiber based ACF can be used as an efficient adsorbent for the urea removal process.
  11. Fatimah I, Prakoso NI, Sahroni I, Musawwa MM, Sim YL, Kooli F, et al.
    Heliyon, 2019 Nov;5(11):e02766.
    PMID: 31844705 DOI: 10.1016/j.heliyon.2019.e02766
    In this work, TiO2/SiO2 composite photocatalysts were prepared using biogenic silica extracted from bamboo leaves and titanium tetraisopropoxide as a titania precursor via a sol-gel mechanism. A study of the physicochemical properties of materials as a function of their titanium dioxide content was conducted using Fourier transform infrared spectroscopy, a scanning electron microscope, a diffuse reflectance ultraviolet-visible (UV-vis) spectrophotometer, and a gas sorption analyzer. The relationship between physicochemical parameters and photocatalytic performance was evaluated using the methylene blue (MB) photocatalytic degradation process under UV irradiation with and without the addition of H2O2 as an oxidant. The results demonstrated that increasing the TiO2 helps enhance the parameters of specific surface area, the pore volume, and the particle size of titanium dioxide, while the band gap energy reaches a maximum of 3.21 eV for 40% and 60% Ti content. The composites exhibit photocatalytic activity with the MB degradation with increasing photocatalytic efficiency since the composites with 40 and 60% wt. of TiO2 demonstrated the higher degradation rate compared with TiO2 in the presence and absence of H2O2. This higher rate is correlated with the higher specific surface area and band gap energy compared with those of TiO2.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links