Displaying all 2 publications

Abstract:
Sort:
  1. Radhakrishnan AK, Sim GC, Cheong SK
    Biores Open Access, 2012 Oct;1(5):239-46.
    PMID: 23515111 DOI: 10.1089/biores.2012.0229
    Repetitive vaccinations with dendritic cell (DC)-based vaccines over long periods of time can break pre-existing tolerance to tumors and achieve clinically relevant immune response. This requires a large number of DCs to be generated under good manufacturing protocol, which is time- and cost intensive. Thus, producing a large numbers of DCs at one time point and cryopreserving these cells in ready-for-use aliquots for clinical application may overcome this constraint. This could also reduce batch-to-batch variations. In this study, we generated DCs from bone marrow obtained from BALB/c mice. Some of the generated DCs were cryopreserved before conducting various tests. There were no significant differences in the morphology and phenotype between cryopreserved and freshly generated DCs. Both types of DCs pulsed with tumor lysate (TL) from 4T1 murine mammary cancer cells (DC+TL) possessed a similar capacity to stimulate the proliferation of T-cells. In addition, cryopreserved and fresh DC pulsed with TL showed similar tumor growth inhibition patterns. Both DCs induced initial retardation of tumor growth (p<0.05) and prolonged the survival (p<0.05) of tumor-bearing mice treated with DC+TL as compared with nontreated control mice. Cryopreserved DCs shared similar therapeutic efficacy to fresh DCs, and this finding lends supports the routine use of cryopreserved DCs in future clinical trials.
  2. Tan YF, Sim GC, Habsah A, Leong CF, Cheong SK
    Malays J Pathol, 2008 Dec;30(2):73-9.
    PMID: 19291915 MyJurnal
    Dendritic cells (DC) are professional antigen presenting cells of the immune system. Through the use of DC vaccines (DC after exposure to tumour antigens), cryopreserved in single-use aliquots, an attractive and novel immunotherapeutic strategy is available as an option for treatment. In this paper we describe an in vitro attempt to scale-up production of clinical-grade DC vaccines from leukemic cells. Blast cells of two relapsed AML patients were harvested for DC generation in serum-free culture medium containing clinical-grade cytokines GM-CSF, IL-4 and TNF-alpha. Cells from patient 1 were cultured in a bag and those from patient 2 were cultured in a flask. The numbers of seeding cells were 2.24 x 10(8) and 0.8 x 10(8), respectively. DC yields were 10 x 10(6) and 29.8 x 10(6) cells, giving a conversion rate of 4.7% and 37%, respectively. These DC vaccines were then cryopreserved in approximately one million cells per vial with 20% fresh frozen group AB plasma and 10% DMSO. At 12 months and 21 months post cryopreservation, these DC vaccines were thawed, and their sterility, viability, phenotype and functionality were studied. DC vaccines remained sterile up to 21 months of storage. Viability of the cryopreserved DC in the culture bag and flask was found to be 50% and 70% at 12 months post cryopreservation respectively; and 48% and 67% at 21 months post cryopreservation respectively. These DC vaccines exhibited mature DC surface phenotypic markers of CD83, CD86 and HLA-DR, and negative for haemopoietic markers. Mixed lymphocyte reaction (MLR) study showed functional DC vaccines. These experiments demonstrated that it is possible to produce clinical-grade DC vaccines in vitro from blast cells of leukemic patients, which could be cryopreserved up to 21 months for use if repeated vaccinations are required in the course of therapy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links