Displaying all 2 publications

Abstract:
Sort:
  1. Chour RG, Moda A, Arora A, Arafath MY, Shetty VK, Rishal Y
    J Int Soc Prev Community Dent, 2016 Aug;6(Suppl 2):S166-70.
    PMID: 27652251 DOI: 10.4103/2231-0762.189761
    Satisfactory composite restoration depends upon its smooth finish, quality of polishing agents, type of composite material used, and its composition. The present study evaluated the effect of different polishing systems on the surface roughness of composite resin.
  2. Gupta S, Vellanki VK, Shetty VK, Kushwah S, Goyal G, Chandra SM
    J Clin Diagn Res, 2015 Jan;9(1):ZC09-11.
    PMID: 25738077 DOI: 10.7860/JCDR/2015/11463.5386
    AIMS: To compare the shear bond strength of nanocomposites to dentin using three different types of adhesive systems; and to test few specimens under Scanning Electron Microscope (SEM) for analysing whether the bond failure is adhesive or cohesive.

    MATERIALS AND METHODS: Sixty human premolar teeth were selected and were randomly grouped, with 20 specimens in each group: group 1 - fluoride releasing dentin bonding agent; group 2 - antibacterial containing dentin bonding agent; and group 3 - one step conventional self etch adhesive. Each group was treated with its respective bonding agents, composite resin build up was done, and shear bond strengths were tested using Instron Universal testing machine. Few of the specimens were tested under SEM.

    RESULTS: The results were statistically analysed using One-way ANOVA and paired t-test. It was observed that group 3 has the highest shear bond strength followed by group 2, and then group 1. Adhesive failures and mixed failures were most frequent types of failures as seen under SEM.

    CONCLUSION: Addition of antimicrobial agent decreases the bond strength of dentin bonding agent and addition of fluoride further decreases the bond strength. From SEM results it can be concluded that the zone of failure could not be defined and also that the failure mode was independent of the dentin bonding agent used.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links