Displaying all 5 publications

Abstract:
Sort:
  1. Sheikh NA, Ching DLC, Khan I, Sakidin HB
    Sci Rep, 2022 Aug 18;12(1):14117.
    PMID: 35982149 DOI: 10.1038/s41598-022-18110-1
    The flow of fluid through porous media is of great importance in industry and other physical situations, Darcy's law is one of the most useful laws to describe such situation, however, the flows through a dense swarm of particles or through a very high porous media cannot be elaborated by this law. To overcome this difficulty, Brinkman proposed a new idea of Brinkman-type fluid in highly porous media. In this study, the Brinkman-type fluid flow is analyzed with hybrid nanoparticles (a hybridized mixture of clay and alumina), suspended in water taken as a base fluid under the effect of an applied magnetic field. The fluid motion is taken inside a vertical channel with heated walls. Free convection is induced due to buoyancy. The momentum and energy equations are written in dimensionless form using the non-dimensional variables. The energy equation is modified to fractional differential equations using the generalized Fourier's law and the Caputo fractional derivatives. The fractional model is solved using the Laplace and Fourier transformation. Variations in velocity and temperature are shown for various fractional parameter values, as well as charts for the classical model. For the volume fractions of nanoparticles, the temperature distribution increases, with maximum values of hybrid nanoparticles with the highest specified volume fractions. Moreover, due to hybrid nanoparticles, the rate of heat transfer is intensified.
  2. Yasmin F, Tamrin KF, Sheikh NA, Barroy P, Yassin A, Khan AA, et al.
    Materials (Basel), 2021 Mar 09;14(5).
    PMID: 33803364 DOI: 10.3390/ma14051311
    Laser-assisted high speed milling is a subtractive machining method that employs a laser to thermally soften a difficult-to-cut material's surface in order to enhance machinability at a high material removal rate with improved surface finish and tool life. However, this machining with high speed leads to high friction between workpiece and tool, and can result in high temperatures, impairing the surface quality. Use of conventional cutting fluid may not effectively control the heat generation. Besides, vegetable-based cutting fluids are invariably a major source of food insecurity of edible oils which is traditionally used as a staple food in many countries. Thus, the primary objective of this study is to experimentally investigate the effects of water-soluble sago starch-based cutting fluid on surface roughness and tool's flank wear using response surface methodology (RSM) while machining of 316 stainless steel. In order to observe the comparison, the experiments with same machining parameters are conducted with conventional cutting fluid. The prepared water-soluble sago starch based cutting fluid showed excellent cooling and lubricating performance. Therefore, in comparison to the machining using conventional cutting fluid, a decrease of 48.23% in surface roughness and 38.41% in flank wear were noted using presented approach. Furthermore, using the extreme learning machine (ELM), the obtained data is modeled to predict surface roughness and flank wear and showed good agreement between observations and predictions.
  3. Sheikh NA, Ching DLC, Khan I, Sakidin HB, Jamil M, Khalid HU, et al.
    Sci Rep, 2021 Aug 09;11(1):16117.
    PMID: 34373521 DOI: 10.1038/s41598-021-95528-z
    The present work used fractional model of Casson fluid by utilizing a generalized Fourier's Law to construct Caputo Fractional model. A porous medium containing nanofluid flowing in a channel is considered with free convection and electrical conduction. A novel transformation is applied for energy equation and then solved by using integral transforms, combinedly, the Fourier and Laplace transformations. The results are shown in form of Mittag-Leffler function. The influence of physical parameters have been presented in graphs and values in tables are discussed in this work. The results reveal that heat transfer increases with increasing values of the volume fraction of nanoparticles, while the velocity of the nanofluid decreases with the increasing values of volume fraction of these particles.
  4. Tamrin KF, Moghadasi K, Jalil MH, Sheikh NA, Mohamaddan S
    Materials (Basel), 2021 Apr 16;14(8).
    PMID: 33923675 DOI: 10.3390/ma14082009
    This study discloses a method for painting artwork using a CO2 laser. The continuous-wave laser beam, at a predetermined heat flux and a predetermined number of laser beam passes, mixes and displaces the plurality of colored polymer-based compositions, respectively, by way of melting and vaporizing them. Experiments showed a great accuracy of colors and designed patterns between the computer aided design (CAD) drawing and what was achieved after laser discoloration. It was found that lower values of power and speed provide sufficient energy and time to make a melt pool of colors and cause their vaporization from the surface. A detailed numerical simulation was performed to obtain a detailed understanding of the physics of laser interaction with paint using ABAQUS software. The comparative analysis indicated that the top layer of paint (including yellow and green colors) melted upon increasing cutting speed and employing one laser pass. For blue and red paints, two passes of lasers are required; in the case of red color, lower laser speed is also necessary to intensify the heat. This method can be applied for making art designs on each surface color because it is based on melting and vaporization using a laser.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links