Displaying all 5 publications

Abstract:
Sort:
  1. Abdulameer MH, Sheikh Abdullah SN, Othman ZA
    ScientificWorldJournal, 2014;2014:879031.
    PMID: 25165748 DOI: 10.1155/2014/879031
    Active appearance model (AAM) is one of the most popular model-based approaches that have been extensively used to extract features by highly accurate modeling of human faces under various physical and environmental circumstances. However, in such active appearance model, fitting the model with original image is a challenging task. State of the art shows that optimization method is applicable to resolve this problem. However, another common problem is applying optimization. Hence, in this paper we propose an AAM based face recognition technique, which is capable of resolving the fitting problem of AAM by introducing a new adaptive ABC algorithm. The adaptation increases the efficiency of fitting as against the conventional ABC algorithm. We have used three datasets: CASIA dataset, property 2.5D face dataset, and UBIRIS v1 images dataset in our experiments. The results have revealed that the proposed face recognition technique has performed effectively, in terms of accuracy of face recognition.
  2. Alomari YM, Sheikh Abdullah SN, Zaharatul Azma R, Omar K
    Comput Math Methods Med, 2014;2014:979302.
    PMID: 24803955 DOI: 10.1155/2014/979302
    Segmentation and counting of blood cells are considered as an important step that helps to extract features to diagnose some specific diseases like malaria or leukemia. The manual counting of white blood cells (WBCs) and red blood cells (RBCs) in microscopic images is an extremely tedious, time consuming, and inaccurate process. Automatic analysis will allow hematologist experts to perform faster and more accurately. The proposed method uses an iterative structured circle detection algorithm for the segmentation and counting of WBCs and RBCs. The separation of WBCs from RBCs was achieved by thresholding, and specific preprocessing steps were developed for each cell type. Counting was performed for each image using the proposed method based on modified circle detection, which automatically counted the cells. Several modifications were made to the basic (RCD) algorithm to solve the initialization problem, detecting irregular circles (cells), selecting the optimal circle from the candidate circles, determining the number of iterations in a fully dynamic way to enhance algorithm detection, and running time. The validation method used to determine segmentation accuracy was a quantitative analysis that included Precision, Recall, and F-measurement tests. The average accuracy of the proposed method was 95.3% for RBCs and 98.4% for WBCs.
  3. Abdulameer MH, Sheikh Abdullah SN, Othman ZA
    ScientificWorldJournal, 2014;2014:835607.
    PMID: 24790584 DOI: 10.1155/2014/835607
    Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented.
  4. Alomari YM, Sheikh Abdullah SN, MdZin RR, Omar K
    Comput Math Methods Med, 2015;2015:673658.
    PMID: 25793010 DOI: 10.1155/2015/673658
    Analysis of whole-slide tissue for digital pathology images has been clinically approved to provide a second opinion to pathologists. Localization of focus points from Ki-67-stained histopathology whole-slide tissue microscopic images is considered the first step in the process of proliferation rate estimation. Pathologists use eye pooling or eagle-view techniques to localize the highly stained cell-concentrated regions from the whole slide under microscope, which is called focus-point regions. This procedure leads to a high variety of interpersonal observations and time consuming, tedious work and causes inaccurate findings. The localization of focus-point regions can be addressed as a clustering problem. This paper aims to automate the localization of focus-point regions from whole-slide images using the random patch probabilistic density method. Unlike other clustering methods, random patch probabilistic density method can adaptively localize focus-point regions without predetermining the number of clusters. The proposed method was compared with the k-means and fuzzy c-means clustering methods. Our proposed method achieves a good performance, when the results were evaluated by three expert pathologists. The proposed method achieves an average false-positive rate of 0.84% for the focus-point region localization error. Moreover, regarding RPPD used to localize tissue from whole-slide images, 228 whole-slide images have been tested; 97.3% localization accuracy was achieved.
  5. Sheikh Abdullah SN, Bohani FA, Nayef BH, Sahran S, Al Akash O, Iqbal Hussain R, et al.
    Comput Math Methods Med, 2016;2016:8603609.
    PMID: 27516807 DOI: 10.1155/2016/8603609
    Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links