Displaying all 3 publications

Abstract:
Sort:
  1. Thakur AK, Sathyamurthy R, Velraj R, Lynch I, Saidur R, Pandey AK, et al.
    J Environ Manage, 2021 Jul 15;290:112668.
    PMID: 33895445 DOI: 10.1016/j.jenvman.2021.112668
    The SARS-CoV-2 virus has spread globally and has severely impacted public health and the economy. Hand hygiene, social distancing, and the usage of personal protective equipment are considered the most vital tools in controlling the primary transmission of the virus. Converging evidence indicated the presence of SARS-CoV-2 in wastewater and its persistence over several days, which may create secondary transmission of the virus via waterborne and wastewater pathways. Although, researchers have started focusing on this mode of virus transmission, limited knowledge and societal unawareness of the transmission through wastewater may lead to significant increases in the number of positive cases. To emphasize the severe issue of virus transmission through wastewater and create societal awareness, we present a state of the art critical review on transmission of SARS-CoV-2 in wastewater and the potential remedial strategies to effectively control the viral spread and safeguard society. For low-income countries with high population densities, it is suggested to identify the virus in large scale municipal wastewater plants before following up with one-to-one testing for effective control of the secondary transmission. Ultrafiltration is an effective method for wastewater treatment and usually more than 4 logs of virus removal are achieved while safeguarding good protein permeability. Decentralized wastewater treatment facilities using solar-assisted disinfestation methods are most economical and can be effectively used in hospitals, isolation wards, and medical centers for reducing the risk of transmission from high local concentration sites, especially in tropical countries with abundant solar energy. Disinfection with chlorine, sodium hypochlorite, benzalkonium chloride, and peracetic acid have shown potential in terms of virucidal properties. Biological wastewater treatment using micro-algae will be highly effective in removal of virus and can be incorporated into membrane bio-reaction to achieve excellent virus removal rate. Though promising results have been shown by initial research for inactivation of SARS-CoV-2 in wastewater using physical, chemical and biological based treatment methods, there is a pressing need for extensive investigation of COVID-19 specific disinfectants with appropriate concentrations, their environmental implications, and regular monitoring of transmission. Effective wastewater treatment methods with high virus removal capacity and low treatment costs should be selected to control the virus spread and safeguard society from this deadly virus.
  2. Christopher SS, Thakur AK, Hazra SK, Sharshir SW, Pandey AK, Rahman S, et al.
    PMID: 36940023 DOI: 10.1007/s11356-023-26399-2
    The aim of this research was to develop a model for a solar refrigeration system (SRS) that utilizes an External Compound Parabolic Collector and a thermal energy storage system (TESS) for solar water heating in Chennai, India. The system parameters were optimized using TRNSYS software by varying factors such as collector area, mass flow rate of heat transfer fluid, and storage system volume and height. The resulting optimized system was found to meet 80% of hot water requirements for the application on an annual basis, with an annual collector energy efficiency of 58% and an annual TESS exergy efficiency of 64% for a discharge period of 6 h per day. In addition, the thermal performance of 3.5 kW SRS was studied by connecting it to an optimized solar water heating system (SWHS). The system was found to generate an average cooling energy of 12.26 MJ/h annually, with a coefficient of performance of 0.59. By demonstrating the ability to efficiently generate both hot water and cooling energy, the results of this study indicate the potential for utilizing a SWHS in combination with STST and SRS. The optimization of system parameters and the use of exergy analysis provide valuable insights into the thermal behavior and performance of the system, which can inform future designs and improve the overall efficiency of similar systems.
  3. Meskher H, Ragdi T, Thakur AK, Ha S, Khelfaoui I, Sathyamurthy R, et al.
    Crit Rev Anal Chem, 2023 Feb 01.
    PMID: 36724894 DOI: 10.1080/10408347.2023.2171277
    Carbon nanotubes (CNTs), are safe, biocompatible, bioactive, and biodegradable materials, and have sparked a lot of attention due to their unique characteristics in a variety of applications, including medical and dye industries, paper manufacturing and water purification. CNTs also have a strong film-forming potential, permitting them to be widely employed in constructing sensors and biosensors. This review concentrates on the application of CNT-based nanocomposites in the production of electrochemical sensors and biosensors. It emphasizes the synthesis and optimization of CNT-based sensors for a range of applications and outlines the benefits of using CNTs for biomolecule immobilization. In addition, the use of molecularly imprinted polymer (MIP)-CNTs in the production of electrochemical sensors is also discussed. The challenges faced by the current CNTs-based sensors, along with some the future perspectives and their future opportunities, are also briefly explained in this paper.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links