METHODS: The subjects consisted of preterm infants 24-34 weeks' gestation born at Universiti Kebangsaan Malaysia Medical Centre. Infants were randomly assigned to NeoCap or control groups. Infants in both groups were wrapped in polyethylene sheets from the neck downwards immediately after birth without prior drying. Infants in the control group had their heads dried and subsequently covered with cotton caps while infants in the NeoCap group had polyethylene caps put on without drying. Axillary temperature was measured on admission to the neonatal intensive care unit (NICU), and after having been stabilized in the incubator.
RESULTS: Among the 80 infants recruited, admission hypothermia (axillary temperature <36.5°C) was present in 37 (92.5%) and in 40 (100%) in the NeoCap and control groups, respectively. There was no significant difference in mean temperature on NICU admission between the two groups (35.3 vs 35.1°C, P = 0.36). Mean post-stabilization temperature, however, was significantly higher in the NeoCap group (36.0 vs 35.5°C, P = 0.01).
CONCLUSION: Combined use of polyethylene body wrap and polyethylene cap was associated with a significantly higher mean post-stabilization temperature compared with polyethylene body wrap and cotton cap.
METHODS: The study was conducted among COVID-19 subjects at an out-of-hospital setting whereby lung ultrasound was done and subsequently chest x-rays were taken after being admitted to the health care facilities. Lung ultrasound findings were reviewed by emergency physicians, while the chest x-rays were reviewed by radiologists. Radiologists were blinded by the patients' lung ultrasound findings and clinical conditions. The analysis of the agreement between the lung ultrasound findings and chest x-rays was conducted.
RESULTS: A total of 261 subjects were recruited. LUS detected pulmonary infiltrative changes in more stage 3 COVID-19 subjects in comparison to chest x-rays. Multiple B-lines were the predominant findings at the right lower anterior, posterior and lateral zones. Interstitial consolidations and ground glass opacities were the predominant descriptive findings in chest x-rays. However, there was no agreement between lung ultrasound and chest x-ray findings in detecting COVID-19 pneumonia as the Cohen's Kappa coefficient was 0.08 (95% CI 0.06-0.22, p = 0.16).
CONCLUSION: The diagnostic imaging and staging of COVID-19 patients using lung ultrasound in out-of-hospital settings showed LUS detected lung pleural disease more often than CXR for stage 3 COVID-19 patients.
METHODS: This retrospective study was conducted in emergency departments of two tertiary hospitals from June 1 to August 31, 2021. Consecutive patients aged >18 years admitted for COVID-19-related HRF (World Health Organization criteria: confirmed COVID-19 pneumonia with respiratory rate > 30 breaths/min, severe respiratory distress, or peripheral oxygen saturation < 90% on room air) requiring NRB + NC or HFNC were screened for enrollment. Primary outcome was improvement of partial pressure arterial oxygen (PaO2) at two hours. Secondary outcomes were intubation rate, ventilator-free days, hospital length of stay, and 28-day mortality. Data were analyzed using linear regression with inverse probability of treatment weighting (IPTW) based on propensity score.
RESULTS: Among the 110 patients recruited, 52 (47.3%) were treated with NRB + NC, and 58 (52.7%) with HFNC. There were significant improvements in patients' PaO2, PaO2/FIO2 ratio, and respiratory rate two hours after the initiation of NRB + NC and HFNC. Comparing the two groups, after IPTW adjustment, there were no statistically significant differences in PaO2 improvement (adjusted mean ratio [MR] 2.81; 95% CI -5.82 to 11.43; p = .524), intubation rate (adjusted OR 1.76; 95% CI 0.44 to 6.92; p = .423), ventilator-free days (adjusted MR 0.00; 95% CI -8.84 to 8.85; p = .999), hospital length of stay (adjusted MR 3.04; 95% CI -2.62 to 8.69; p = .293), and 28-day mortality (adjusted OR 0.68; 95% CI 0.15 to 2.98; p = .608).
CONCLUSION: HFNC may be beneficial in COVID-19 HRF. NRB + NC is a viable alternative, especially in resource-limited settings, given similar improvement in oxygenation at two hours, and no significant differences in long-term outcomes. The effectiveness of NRB + NC needs to be investigated by a powered randomized controlled trial.