Displaying all 9 publications

Abstract:
Sort:
  1. Campa D, Rizzato C, Stolzenberg-Solomon R, Pacetti P, Vodicka P, Cleary SP, et al.
    Int J Cancer, 2015 Nov 01;137(9):2175-83.
    PMID: 25940397 DOI: 10.1002/ijc.29590
    A small number of common susceptibility loci have been identified for pancreatic cancer, one of which is marked by rs401681 in the TERT-CLPTM1L gene region on chromosome 5p15.33. Because this region is characterized by low linkage disequilibrium, we sought to identify whether additional single nucleotide polymorphisms (SNPs) could be related to pancreatic cancer risk, independently of rs401681. We performed an in-depth analysis of genetic variability of the telomerase reverse transcriptase (TERT) and the telomerase RNA component (TERC) genes, in 5,550 subjects with pancreatic cancer and 7,585 controls from the PANcreatic Disease ReseArch (PANDoRA) and the PanScan consortia. We identified a significant association between a variant in TERT and pancreatic cancer risk (rs2853677, odds ratio = 0.85; 95% confidence interval = 0.80-0.90, p = 8.3 × 10(-8)). Additional analysis adjusting rs2853677 for rs401681 indicated that the two SNPs are independently associated with pancreatic cancer risk, as suggested by the low linkage disequilibrium between them (r(2) = 0.07, D' = 0.28). Three additional SNPs in TERT reached statistical significance after correction for multiple testing: rs2736100 (p = 3.0 × 10(-5) ), rs4583925 (p = 4.0 × 10(-5) ) and rs2735948 (p = 5.0 × 10(-5) ). In conclusion, we confirmed that the TERT locus is associated with pancreatic cancer risk, possibly through several independent variants.
  2. Ghoneim DH, Zhu J, Zheng W, Long J, Murff HJ, Ye F, et al.
    Cancer Epidemiol Biomarkers Prev, 2020 Dec;29(12):2735-2739.
    PMID: 32967863 DOI: 10.1158/1055-9965.EPI-20-0651
    BACKGROUND: Whether circulating polyunsaturated fatty acid (PUFA) levels are associated with pancreatic cancer risk is uncertain. Mendelian randomization (MR) represents a study design using genetic instruments to better characterize the relationship between exposure and outcome.

    METHODS: We utilized data from genome-wide association studies within the Pancreatic Cancer Cohort Consortium and Pancreatic Cancer Case-Control Consortium, involving approximately 9,269 cases and 12,530 controls of European descent, to evaluate associations between pancreatic cancer risk and genetically predicted plasma n-6 PUFA levels. Conventional MR analyses were performed using individual-level and summary-level data.

    RESULTS: Using genetic instruments, we did not find evidence of associations between genetically predicted plasma n-6 PUFA levels and pancreatic cancer risk [estimates per one SD increase in each PUFA-specific weighted genetic score using summary statistics: linoleic acid odds ratio (OR) = 1.00, 95% confidence interval (CI) = 0.98-1.02; arachidonic acid OR = 1.00, 95% CI = 0.99-1.01; and dihomo-gamma-linolenic acid OR = 0.95, 95% CI = 0.87-1.02]. The OR estimates remained virtually unchanged after adjustment for covariates, using individual-level data or summary statistics, or stratification by age and sex.

    CONCLUSIONS: Our results suggest that variations of genetically determined plasma n-6 PUFA levels are not associated with pancreatic cancer risk.

    IMPACT: These results suggest that modifying n-6 PUFA levels through food sources or supplementation may not influence risk of pancreatic cancer.

  3. Mocci E, Kundu P, Wheeler W, Arslan AA, Beane-Freeman LE, Bracci PM, et al.
    Cancer Res, 2021 Jun 01;81(11):3134-3143.
    PMID: 33574088 DOI: 10.1158/0008-5472.CAN-20-3267
    Germline variation and smoking are independently associated with pancreatic ductal adenocarcinoma (PDAC). We conducted genome-wide smoking interaction analysis of PDAC using genotype data from four previous genome-wide association studies in individuals of European ancestry (7,937 cases and 11,774 controls). Examination of expression quantitative trait loci data from the Genotype-Tissue Expression Project followed by colocalization analysis was conducted to determine whether there was support for common SNP(s) underlying the observed associations. Statistical tests were two sided and P < 5 × 10-8 was considered statistically significant. Genome-wide significant evidence of qualitative interaction was identified on chr2q21.3 in intron 5 of the transmembrane protein 163 (TMEM163) and upstream of the cyclin T2 (CCNT2). The most significant SNP using the Empirical Bayes method, in this region that included 45 significantly associated SNPs, was rs1818613 [per allele OR in never smokers 0.87, 95% confidence interval (CI), 0.82-0.93; former smokers 1.00, 95% CI, 0.91-1.07; current smokers 1.25, 95% CI 1.12-1.40, P interaction = 3.08 × 10-9). Examination of the Genotype-Tissue Expression Project data demonstrated an expression quantitative trait locus in this region for TMEM163 and CCNT2 in several tissue types. Colocalization analysis supported a shared SNP, rs842357, in high linkage disequilibrium with rs1818613 (r 2 = 0. 94) driving both the observed interaction and the expression quantitative trait loci signals. Future studies are needed to confirm and understand the differential biologic mechanisms by smoking status that contribute to our PDAC findings. SIGNIFICANCE: This large genome-wide interaction study identifies a susceptibility locus on 2q21.3 that significantly modified PDAC risk by smoking status, providing insight into smoking-associated PDAC, with implications for prevention.
  4. Yuan F, Hung RJ, Walsh N, Zhang H, Platz EA, Wheeler W, et al.
    Cancer Res, 2020 Sep 15;80(18):4004-4013.
    PMID: 32641412 DOI: 10.1158/0008-5472.CAN-20-0447
    Registry-based epidemiologic studies suggest associations between chronic inflammatory intestinal diseases and pancreatic ductal adenocarcinoma (PDAC). As genetic susceptibility contributes to a large proportion of chronic inflammatory intestinal diseases, we hypothesize that the genomic regions surrounding established genome-wide associated variants for these chronic inflammatory diseases are associated with PDAC. We examined the association between PDAC and genomic regions (±500 kb) surrounding established common susceptibility variants for ulcerative colitis, Crohn's disease, inflammatory bowel disease, celiac disease, chronic pancreatitis, and primary sclerosing cholangitis. We analyzed summary statistics from genome-wide association studies data for 8,384 cases and 11,955 controls of European descent from two large consortium studies using the summary data-based adaptive rank truncated product method to examine the overall association of combined genomic regions for each inflammatory disease group. Combined genomic susceptibility regions for ulcerative colitis, Crohn disease, inflammatory bowel disease, and chronic pancreatitis were associated with PDAC at P values < 0.05 (0.0040, 0.0057, 0.011, and 3.4 × 10-6, respectively). After excluding the 20 PDAC susceptibility regions (±500 kb) previously identified by GWAS, the genomic regions for ulcerative colitis, Crohn disease, and inflammatory bowel disease remained associated with PDAC (P = 0.0029, 0.0057, and 0.0098, respectively). Genomic regions for celiac disease (P = 0.22) and primary sclerosing cholangitis (P = 0.078) were not associated with PDAC. Our results support the hypothesis that genomic regions surrounding variants associated with inflammatory intestinal diseases, particularly, ulcerative colitis, Crohn disease, inflammatory bowel disease, and chronic pancreatitis are associated with PDAC. SIGNIFICANCE: The joint effects of common variants in genomic regions containing susceptibility loci for inflammatory bowel disease and chronic pancreatitis are associated with PDAC and may provide insights to understanding pancreatic cancer etiology.
  5. Tang H, Jiang L, Stolzenberg-Solomon RZ, Arslan AA, Beane Freeman LE, Bracci PM, et al.
    Cancer Epidemiol Biomarkers Prev, 2020 Sep;29(9):1784-1791.
    PMID: 32546605 DOI: 10.1158/1055-9965.EPI-20-0275
    BACKGROUND: Obesity and diabetes are major modifiable risk factors for pancreatic cancer. Interactions between genetic variants and diabetes/obesity have not previously been comprehensively investigated in pancreatic cancer at the genome-wide level.

    METHODS: We conducted a gene-environment interaction (GxE) analysis including 8,255 cases and 11,900 controls from four pancreatic cancer genome-wide association study (GWAS) datasets (Pancreatic Cancer Cohort Consortium I-III and Pancreatic Cancer Case Control Consortium). Obesity (body mass index ≥30 kg/m2) and diabetes (duration ≥3 years) were the environmental variables of interest. Approximately 870,000 SNPs (minor allele frequency ≥0.005, genotyped in at least one dataset) were analyzed. Case-control (CC), case-only (CO), and joint-effect test methods were used for SNP-level GxE analysis. As a complementary approach, gene-based GxE analysis was also performed. Age, sex, study site, and principal components accounting for population substructure were included as covariates. Meta-analysis was applied to combine individual GWAS summary statistics.

    RESULTS: No genome-wide significant interactions (departures from a log-additive odds model) with diabetes or obesity were detected at the SNP level by the CC or CO approaches. The joint-effect test detected numerous genome-wide significant GxE signals in the GWAS main effects top hit regions, but the significance diminished after adjusting for the GWAS top hits. In the gene-based analysis, a significant interaction of diabetes with variants in the FAM63A (family with sequence similarity 63 member A) gene (significance threshold P < 1.25 × 10-6) was observed in the meta-analysis (P GxE = 1.2 ×10-6, P Joint = 4.2 ×10-7).

    CONCLUSIONS: This analysis did not find significant GxE interactions at the SNP level but found one significant interaction with diabetes at the gene level. A larger sample size might unveil additional genetic factors via GxE scans.

    IMPACT: This study may contribute to discovering the mechanism of diabetes-associated pancreatic cancer.

  6. Klein AP, Wolpin BM, Risch HA, Stolzenberg-Solomon RZ, Mocci E, Zhang M, et al.
    Nat Commun, 2018 02 08;9(1):556.
    PMID: 29422604 DOI: 10.1038/s41467-018-02942-5
    In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 × 10-8). Replication of 10 promising signals in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PANDoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (NOC2L, P = 8.36 × 10-14), rs2941471 at 8q21.11 (HNF4G, P = 6.60 × 10-10), rs4795218 at 17q12 (HNF1B, P = 1.32 × 10-8), and rs1517037 at 18q21.32 (GRP, P = 3.28 × 10-8). rs78417682 is not statistically significantly associated with pancreatic cancer in PANDoRA. Expression quantitative trait locus analysis in three independent pancreatic data sets provides molecular support of NOC2L as a pancreatic cancer susceptibility gene.
  7. Zhang M, Wang Z, Obazee O, Jia J, Childs EJ, Hoskins J, et al.
    Oncotarget, 2016 Oct 11;7(41):66328-66343.
    PMID: 27579533 DOI: 10.18632/oncotarget.11041
    Genome-wide association studies (GWAS) have identified common pancreatic cancer susceptibility variants at 13 chromosomal loci in individuals of European descent. To identify new susceptibility variants, we performed imputation based on 1000 Genomes (1000G) Project data and association analysis using 5,107 case and 8,845 control subjects from 27 cohort and case-control studies that participated in the PanScan I-III GWAS. This analysis, in combination with a two-staged replication in an additional 6,076 case and 7,555 control subjects from the PANcreatic Disease ReseArch (PANDoRA) and Pancreatic Cancer Case-Control (PanC4) Consortia uncovered 3 new pancreatic cancer risk signals marked by single nucleotide polymorphisms (SNPs) rs2816938 at chromosome 1q32.1 (per allele odds ratio (OR) = 1.20, P = 4.88x10 -15), rs10094872 at 8q24.21 (OR = 1.15, P = 3.22x10 -9) and rs35226131 at 5p15.33 (OR = 0.71, P = 1.70x10 -8). These SNPs represent independent risk variants at previously identified pancreatic cancer risk loci on chr1q32.1 ( NR5A2), chr8q24.21 ( MYC) and chr5p15.33 ( CLPTM1L- TERT) as per analyses conditioned on previously reported susceptibility variants. We assessed expression of candidate genes at the three risk loci in histologically normal ( n = 10) and tumor ( n = 8) derived pancreatic tissue samples and observed a marked reduction of NR5A2 expression (chr1q32.1) in the tumors (fold change -7.6, P = 5.7x10 -8). This finding was validated in a second set of paired ( n = 20) histologically normal and tumor derived pancreatic tissue samples (average fold change for three NR5A2 isoforms -31.3 to -95.7, P = 7.5x10 -4-2.0x10 -3). Our study has identified new susceptibility variants independently conferring pancreatic cancer risk that merit functional follow-up to identify target genes and explain the underlying biology.
  8. Walsh N, Zhang H, Hyland PL, Yang Q, Mocci E, Zhang M, et al.
    J Natl Cancer Inst, 2019 Jun 01;111(6):557-567.
    PMID: 30541042 DOI: 10.1093/jnci/djy155
    BACKGROUND: Genome-wide association studies (GWAS) identify associations of individual single-nucleotide polymorphisms (SNPs) with cancer risk but usually only explain a fraction of the inherited variability. Pathway analysis of genetic variants is a powerful tool to identify networks of susceptibility genes.

    METHODS: We conducted a large agnostic pathway-based meta-analysis of GWAS data using the summary-based adaptive rank truncated product method to identify gene sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in 9040 cases and 12 496 controls. We performed expression quantitative trait loci (eQTL) analysis and functional annotation of the top SNPs in genes contributing to the top associated pathways and gene sets. All statistical tests were two-sided.

    RESULTS: We identified 14 pathways and gene sets associated with PDAC at a false discovery rate of less than 0.05. After Bonferroni correction (P ≤ 1.3 × 10-5), the strongest associations were detected in five pathways and gene sets, including maturity-onset diabetes of the young, regulation of beta-cell development, role of epidermal growth factor (EGF) receptor transactivation by G protein-coupled receptors in cardiac hypertrophy pathways, and the Nikolsky breast cancer chr17q11-q21 amplicon and Pujana ATM Pearson correlation coefficient (PCC) network gene sets. We identified and validated rs876493 and three correlating SNPs (PGAP3) and rs3124737 (CASP7) from the Pujana ATM PCC gene set as eQTLs in two normal derived pancreas tissue datasets.

    CONCLUSION: Our agnostic pathway and gene set analysis integrated with functional annotation and eQTL analysis provides insight into genes and pathways that may be biologically relevant for risk of PDAC, including those not previously identified.

  9. Zhong J, Jermusyk A, Wu L, Hoskins JW, Collins I, Mocci E, et al.
    J Natl Cancer Inst, 2020 Oct 01;112(10):1003-1012.
    PMID: 31917448 DOI: 10.1093/jnci/djz246
    BACKGROUND: Although 20 pancreatic cancer susceptibility loci have been identified through genome-wide association studies in individuals of European ancestry, much of its heritability remains unexplained and the genes responsible largely unknown.

    METHODS: To discover novel pancreatic cancer risk loci and possible causal genes, we performed a pancreatic cancer transcriptome-wide association study in Europeans using three approaches: FUSION, MetaXcan, and Summary-MulTiXcan. We integrated genome-wide association studies summary statistics from 9040 pancreatic cancer cases and 12 496 controls, with gene expression prediction models built using transcriptome data from histologically normal pancreatic tissue samples (NCI Laboratory of Translational Genomics [n = 95] and Genotype-Tissue Expression v7 [n = 174] datasets) and data from 48 different tissues (Genotype-Tissue Expression v7, n = 74-421 samples).

    RESULTS: We identified 25 genes whose genetically predicted expression was statistically significantly associated with pancreatic cancer risk (false discovery rate < .05), including 14 candidate genes at 11 novel loci (1p36.12: CELA3B; 9q31.1: SMC2, SMC2-AS1; 10q23.31: RP11-80H5.9; 12q13.13: SMUG1; 14q32.33: BTBD6; 15q23: HEXA; 15q26.1: RCCD1; 17q12: PNMT, CDK12, PGAP3; 17q22: SUPT4H1; 18q11.22: RP11-888D10.3; and 19p13.11: PGPEP1) and 11 at six known risk loci (5p15.33: TERT, CLPTM1L, ZDHHC11B; 7p14.1: INHBA; 9q34.2: ABO; 13q12.2: PDX1; 13q22.1: KLF5; and 16q23.1: WDR59, CFDP1, BCAR1, TMEM170A). The association for 12 of these genes (CELA3B, SMC2, and PNMT at novel risk loci and TERT, CLPTM1L, INHBA, ABO, PDX1, KLF5, WDR59, CFDP1, and BCAR1 at known loci) remained statistically significant after Bonferroni correction.

    CONCLUSIONS: By integrating gene expression and genotype data, we identified novel pancreatic cancer risk loci and candidate functional genes that warrant further investigation.

Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links