Displaying all 3 publications

Abstract:
Sort:
  1. Korhonen A, Seelan JSS, Miettinen O
    MycoKeys, 2018.
    PMID: 30057481 DOI: 10.3897/mycokeys.36.27002
    We propose a taxonomic revision of the two closely related white-rot polypore species, Skeletocutis nivea (Jungh.) Jean Keller and S. ochroalba Niemelä (Incrustoporiaceae, Basidiomycota), based on phylogenetic analyses of nuclear ribosomal internal transcribed spacer (ITS) and translation elongation factor EF-1α sequences. We show that prevailing morphological species concepts of S. nivea and S. ochroalba are non-monophyletic and we delineate new species boundaries based on phylogenetic inference. We recognise eleven species within the prevailing species concept of S. nivea (S. calidasp. nov., S. coprosmae comb. nov., S. futilissp. nov., S. imperviasp. nov., S. ipuletiisp. nov., S. lepidasp. nov., S. nemoralissp. nov., S. nivea sensu typi, S. semipileata comb. nov., S. unguinasp. nov. and S. yuchengiisp. nov.) and assign new sequenced epitypes for S. nivea and S. semipileata. The traditional concept of S. ochroalba comprises two independent lineages embedded within the S. nivea species complex. The Eurasian conifer-dwelling species S. cummatasp. nov. is recognised as separate from the North American S. ochroalba sensu stricto. Despite comprehensive microscopic examination, the majority of the recognised species are left without stable diagnostic character combinations that would enable species identification based solely on morphology and ecology.
  2. Shahbaz M, Seelan JSS, Abasi F, Fatima N, Mehak A, Raza MU, et al.
    J Biomol Struct Dyn, 2024 Feb 12.
    PMID: 38344816 DOI: 10.1080/07391102.2024.2312449
    Mango (Mangifera indica L.) is one of the most important fruit crops in the world with yields of approximately 40 million tons annually and its production continues to decrease every year as a result of the attack of certain pathogens i.e. Colletotrichum gloeosporioides, Erythricium salmonicolor, Amritodus atkinsoni, Idioscopus clypealis, Idioscopus nitidulus, Bactrocera obliqua, Bactrocera frauenfeldi, Xanthomonas campestris, and Fusarium mangiferae. So F. mangiferae is the most harmful pathogen that causes mango malformation disease in mango which decreases its 90% yield. Nanotechnology is an eco-friendly and has a promising effect over traditional methods to cure fungal diseases. Different nanoparticles possess antifungal potential in terms of controlling the fungal diseases in plants but applications of nanotechnology in plant disease managements is minimal. The main focus of this review is to highlight the previous and current strategies to control mango malformation and highlights the promising applications of nanomaterials in combating mango malformation. Hence, the present review aims to provide brief information on the disease and effective management strategies.Communicated by Ramaswamy H. Sarma.
  3. Wiart C, Shorna AA, Rahmatullah M, Nissapatorn V, Seelan JSS, Rahman H, et al.
    Molecules, 2023 Jul 28;28(15).
    PMID: 37570687 DOI: 10.3390/molecules28155717
    Scorodocarpus borneensis (Baill.) Becc. is attracting increased attention as a potential commercial medicinal plant product in Southeast Asia. This review summarizes the current knowledge on the taxonomy, habitat, distribution, medicinal uses, natural products, pharmacology, toxicology, and potential utilization of S. borneesis in the pharmaceutical/nutraceutical/functional cosmetic industries. All data in this review were compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem, and a library search from 1866 to 2022. A total of 33 natural products have been identified, of which 11 were organosulfur compounds. The main organosulfur compound in the seeds is bis-(methylthiomethyl)disulfide, which inhibited the growth of a broad spectrum of bacteria and fungi, T-lymphoblastic leukemia cells, as well as platelet aggregation. Organic extracts evoked anti-microbial, cytotoxic, anti-free radical, and termiticidal effects. S. borneensis and its natural products have important and potentially patentable pharmacological properties. In particular, the seeds have the potential to be used as a source of food preservatives, antiseptics, or termiticides. However, there is a need to establish acute and chronic toxicity, to examine in vivo pharmacological effects and to perform clinical studies.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links