Displaying all 7 publications

Abstract:
Sort:
  1. See LM, Hassan R, Tan SG, Bhassu S
    Genetika, 2011 Apr;47(4):566-9.
    PMID: 21675248
    Seven single locus microsatellite markers were characterized in Malaysian giant freshwater prawn, Macrobrachium rosenbergii from an enriched genomic library Primer pairs were designed to flank the repeat sequences and the loci characterized for this species. The bands resulting from the PCR amplifications of these eight microsatellite loci were polymorphic with the number of alleles ranging from 8 to 26 alleles per locus, whereas the observed heterozygosity ranged from 0.0641 to 0.6564. These newly developed microsatellite markers should prove to be useful for population studies and in the management of genetic variations in broodstocks of freshwater prawn, M. rosenbergii.
  2. Appanna R, Ponnampalavanar S, Lum Chai See L, Sekaran SD
    PLoS One, 2010;5(9).
    PMID: 20927388 DOI: 10.1371/journal.pone.0013029
    The human leukocyte antigen alleles have been implicated as probable genetic markers in predicting the susceptibility and/or protection to severe manifestations of dengue virus (DENV) infection. In this present study, we aimed to investigate for the first time, the genotype variants of HLA Class 1(-A and -B) of DENV infected patients against healthy individuals in Malaysia.
  3. Bhassu S, See LM, Hassan R, Siraj SS, Tan SG
    Mol Ecol Resour, 2008 Sep;8(5):983-5.
    PMID: 21585948 DOI: 10.1111/j.1755-0998.2008.02127.x
    Eight single locus microsatellite markers were developed to characterize the Malaysian giant freshwater prawn, Macrobrachium rosenbergii. These microsatellites were isolated from an enriched genomic library contained by using a 5'-anchored polymerase chain reaction technique. Primers were designed to flank the repeat sequences and subsequently used to characterize 30 unrelated individuals of the giant freshwater prawn. The polymerase chain reaction amplification products of these eight microsatellite loci were polymorphic with the number of alleles ranging from two to 10 alleles per locus while the levels of heterozygosity ranged from 0.6333 to 0.8667.
  4. Danylo O, Pirker J, Lemoine G, Ceccherini G, See L, McCallum I, et al.
    Sci Data, 2021 03 30;8(1):96.
    PMID: 33785753 DOI: 10.1038/s41597-021-00867-1
    In recent decades, global oil palm production has shown an abrupt increase, with almost 90% produced in Southeast Asia alone. To understand trends in oil palm plantation expansion and for landscape-level planning, accurate maps are needed. Although different oil palm maps have been produced using remote sensing in the past, here we use Sentinel 1 imagery to generate an oil palm plantation map for Indonesia, Malaysia and Thailand for the year 2017. In addition to location, the age of the oil palm plantation is critical for calculating yields. Here we have used a Landsat time series approach to determine the year in which the oil palm plantations are first detected, at which point they are 2 to 3 years of age. From this, the approximate age of the oil palm plantation in 2017 can be derived.
  5. Schepaschenko D, Chave J, Phillips OL, Lewis SL, Davies SJ, Réjou-Méchain M, et al.
    Sci Data, 2019 10 10;6(1):198.
    PMID: 31601817 DOI: 10.1038/s41597-019-0196-1
    Forest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links