Displaying all 4 publications

Abstract:
Sort:
  1. Yu D, Zheng W, Johansson M, Lan Q, Park Y, White E, et al.
    J Natl Cancer Inst, 2018 Aug 01;110(8):831-842.
    PMID: 29518203 DOI: 10.1093/jnci/djx286
    BACKGROUND: The obesity-lung cancer association remains controversial. Concerns over confounding by smoking and reverse causation persist. The influence of obesity type and effect modifications by race/ethnicity and tumor histology are largely unexplored.

    METHODS: We examined associations of body mass index (BMI), waist circumference (WC), and waist-hip ratio (WHR) with lung cancer risk among 1.6 million Americans, Europeans, and Asians. Cox proportional hazard regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) with adjustment for potential confounders. Analyses for WC/WHR were further adjusted for BMI. The joint effect of BMI and WC/WHR was also evaluated.

    RESULTS: During an average 12-year follow-up, 23 732 incident lung cancer cases were identified. While BMI was generally associated with a decreased risk, WC and WHR were associated with increased risk after controlling for BMI. These associations were seen 10 years before diagnosis in smokers and never smokers, were strongest among blacks, and varied by histological type. After excluding the first five years of follow-up, hazard ratios per 5 kg/m2 increase in BMI were 0.95 (95% CI = 0.90 to 1.00), 0.92 (95% CI = 0.89 to 0.95), and 0.89 (95% CI = 0.86 to 0.91) in never, former, and current smokers, and 0.86 (95% CI = 0.84 to 0.89), 0.94 (95% CI = 0.90 to 0.99), and 1.09 (95% CI = 1.03 to 1.15) for adenocarcinoma, squamous cell, and small cell carcinoma, respectively. Hazard ratios per 10 cm increase in WC were 1.09 (95% CI = 1.00 to 1.18), 1.12 (95% CI = 1.07 to 1.17), and 1.11 (95% CI = 1.07 to 1.16) in never, former, and current smokers, and 1.06 (95% CI = 1.01 to 1.12), 1.20 (95% CI = 1.12 to 1.29), and 1.13 (95% CI = 1.04 to 1.23) for adenocarcinoma, squamous cell, and small cell carcinoma, respectively. Participants with BMIs of less than 25 kg/m2 but high WC had a 40% higher risk (HR = 1.40, 95% CI = 1.26 to 1.56) than those with BMIs of 25 kg/m2 or greater but normal/moderate WC.

    CONCLUSIONS: The inverse BMI-lung cancer association is not entirely due to smoking and reverse causation. Central obesity, particularly concurrent with low BMI, may help identify high-risk populations for lung cancer.

  2. Watts EL, Appleby PN, Perez-Cornago A, Bueno-de-Mesquita HB, Chan JM, Chen C, et al.
    Eur Urol, 2018 Nov;74(5):585-594.
    PMID: 30077399 DOI: 10.1016/j.eururo.2018.07.024
    BACKGROUND: Experimental and clinical evidence implicates testosterone in the aetiology of prostate cancer. Variation across the normal range of circulating free testosterone concentrations may not lead to changes in prostate biology, unless circulating concentrations are low. This may also apply to prostate cancer risk, but this has not been investigated in an epidemiological setting.

    OBJECTIVE: To examine whether men with low concentrations of circulating free testosterone have a reduced risk of prostate cancer.

    DESIGN, SETTING, AND PARTICIPANTS: Analysis of individual participant data from 20 prospective studies including 6933 prostate cancer cases, diagnosed on average 6.8 yr after blood collection, and 12 088 controls in the Endogenous Hormones, Nutritional Biomarkers and Prostate Cancer Collaborative Group.

    OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Odds ratios (ORs) of incident overall prostate cancer and subtypes by stage and grade, using conditional logistic regression, based on study-specific tenths of calculated free testosterone concentration.

    RESULTS AND LIMITATIONS: Men in the lowest tenth of free testosterone concentration had a lower risk of overall prostate cancer (OR=0.77, 95% confidence interval [CI] 0.69-0.86; p<0.001) compared with men with higher concentrations (2nd-10th tenths of the distribution). Heterogeneity was present by tumour grade (phet=0.01), with a lower risk of low-grade disease (OR=0.76, 95% CI 0.67-0.88) and a nonsignificantly higher risk of high-grade disease (OR=1.56, 95% CI 0.95-2.57). There was no evidence of heterogeneity by tumour stage. The observational design is a limitation.

    CONCLUSIONS: Men with low circulating free testosterone may have a lower risk of overall prostate cancer; this may be due to a direct biological effect, or detection bias. Further research is needed to explore the apparent differential association by tumour grade.

    PATIENT SUMMARY: In this study, we looked at circulating testosterone levels and risk of developing prostate cancer, finding that men with low testosterone had a lower risk of prostate cancer.

  3. Abe SK, Nishio M, Huang HL, Leung CY, Islam MR, Rahman MS, et al.
    Public Health, 2024 Dec;237:130-134.
    PMID: 39368404 DOI: 10.1016/j.puhe.2024.09.020
    OBJECTIVES: To evaluate changes in the age at menarche in Asian populations.

    STUDY DESIGN: Retrospective cohort study.

    METHODS: We included 548,830 women from six countries in Asia. The data were sourced from 20 cohorts participating in the Asia Cohort Consortium (ACC) and two additional cohort studies: Japan Multi-institutional Collaborative Cohorts (J-MICC), and Japan Nurse Health Study (JNHS) with data on age at menarche. Joinpoint regression was used to evaluate changes in age at menarche by birth year and by country.

    RESULTS: The study includes data from cohorts in six Asian countries namely, China, Iran, Japan, Korea, Malaysia and Singapore. Birth cohorts ranged from 1873 to 1995. The mean age of menarche was 14.0 years with a standard deviation (SD) of 1.4 years, ranged from 12.6 to 15.5 years. Over 100 years age at menarche showed an overall decrease in all six countries. China showed a mixed pattern of decrease, increase, and subsequent decrease from 1926 to 1960. Iran and Malaysia experienced a sharp decline between about 1985 and 1990, with APC values of -4.48 and -1.24, respectively, while Japan, South Korea, and Singapore exhibited a nearly linear decline since the 1980s, notably with an APC of -3.41 in Singapore from 1993 to 1995.

    CONCLUSIONS: Overall, we observed a declining age at menarche, while the pace of the change differed by country. Additional long-term observation is needed to examine the contributing factors of differences in trend across Asian countries. The study could serve as a tool to strengthen global health campaigns.

  4. Travis RC, Perez-Cornago A, Appleby PN, Albanes D, Joshu CE, Lutsey PL, et al.
    Cancer Res, 2019 Jan 01;79(1):274-285.
    PMID: 30425058 DOI: 10.1158/0008-5472.CAN-18-2318
    Previous prospective studies assessing the relationship between circulating concentrations of vitamin D and prostate cancer risk have shown inconclusive results, particularly for risk of aggressive disease. In this study, we examine the association between prediagnostic concentrations of 25-hydroxyvitamin D [25(OH)D] and 1,25-dihydroxyvitamin D [1,25(OH)2D] and the risk of prostate cancer overall and by tumor characteristics. Principal investigators of 19 prospective studies provided individual participant data on circulating 25(OH)D and 1,25(OH)2D for up to 13,462 men with incident prostate cancer and 20,261 control participants. ORs for prostate cancer by study-specific fifths of season-standardized vitamin D concentration were estimated using multivariable-adjusted conditional logistic regression. 25(OH)D concentration was positively associated with risk for total prostate cancer (multivariable-adjusted OR comparing highest vs. lowest study-specific fifth was 1.22; 95% confidence interval, 1.13-1.31; P trend < 0.001). However, this association varied by disease aggressiveness (P heterogeneity = 0.014); higher circulating 25(OH)D was associated with a higher risk of nonaggressive disease (OR per 80 percentile increase = 1.24, 1.13-1.36) but not with aggressive disease (defined as stage 4, metastases, or prostate cancer death, 0.95, 0.78-1.15). 1,25(OH)2D concentration was not associated with risk for prostate cancer overall or by tumor characteristics. The absence of an association of vitamin D with aggressive disease does not support the hypothesis that vitamin D deficiency increases prostate cancer risk. Rather, the association of high circulating 25(OH)D concentration with a higher risk of nonaggressive prostate cancer may be influenced by detection bias. SIGNIFICANCE: This international collaboration comprises the largest prospective study on blood vitamin D and prostate cancer risk and shows no association with aggressive disease but some evidence of a higher risk of nonaggressive disease.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links