Displaying all 4 publications

Abstract:
Sort:
  1. Mishra M, Chand P, Beja SK, Santos CAG, Silva RMD, Ahmed I, et al.
    Sci Total Environ, 2023 Jun 01;875:162488.
    PMID: 36858239 DOI: 10.1016/j.scitotenv.2023.162488
    The eastern coast of India is one of the regions where most of the population resides in urban areas in the low-elevation coastal zone, making it vulnerable to frequent extreme weather events. The objectives of this study are to assess the short- to long-term shoreline changes of the Odisha coast, to understand how anthropogenic influences, and particularly extreme natural events, affect these changes, and to predict shoreline changes for 2050. This study utilized multi-temporal/spectral/spatial resolution satellite images and a digital shoreline analysis (DSAS) tool to appraise the short- (at five/six-year intervals) and long-term (1990-2019) shoreline dynamics along the coastal part of Odisha over the past three decades (1990-2019). The long-term shoreline analysis shows that the mean shoreline change is about 0.67 m/year and highlights that 52.47 % (227.4 km), 34.70 % (150.4 km), and 12.83 % (55.6 km) of the total Odisha coastline exhibit erosion, accretion, and stability, respectively. During the short-term analysis, the 2000-2005 period had the highest percentage of erosion (64.27 %), followed by the 2005-2010 period with an erosional trend of 59.06 %. The 1995-2000 period showed an accretion trend, whereas, during the last period, i.e., 2015-2019, the percentage of transects depicting erosion and accretion was almost similar. In 2050, 55.85 % of the transects are expected to show accretion, while 44.15 % would show erosion or a constant trend. The study identified the hotspots of coastal erosion along delineated study zones by synthesizing data from previous studies as well. The regional analysis of shoreline change along the Odisha coast would not only provide coastal managers with critical information on shoreline dynamics but also draw attention to vulnerable areas linked to shoreline dynamicity along the coast.
  2. Mishra M, Acharyya T, Kar D, Debanath M, Santos CAG, Silva RMD, et al.
    Mar Pollut Bull, 2021 Nov;172:112881.
    PMID: 34454383 DOI: 10.1016/j.marpolbul.2021.112881
    In this study, we have analyzed how geo-ecological cues for endangered Olive Ridley turtles' mass nesting behavior got modified by impact of four severe cyclones during 2010-2019 that made landfall in the vicinity of Rushikulya estuary, which is one of the largest mass nesting congregation (arribada) sites in the world. Analyzing last 10 years of shoreline dynamics, we show that even the slightest modification in beach morphology influenced their nesting behavior in Rushikulya rookery. Shoreline change analysis showed periodic phases of high/low erosion and the northward longshore sediment movement, which becomes impeded by the southern spit, the length of which increased by about 1800 m. During the analyzed period, the nesting behavior of Olive Ridley turtle was greatly influenced by changes in land use and land cover pattern around the Rushikulya rookery. Such reductions in tree cover and marshy land areas were majorly driven by anthropogenic activities and extreme weather events, such as cyclones. We also report increased mortality of turtles, no or false mass nesting events due to significant loss and/or erosion of the nesting sites due to cyclones. The results indicate that conservation of Olive Ridley turtles should be more holistic, or ecosystem centric, rather than species centric. It is important to maintain the ecological integrity of their habitat for highly synchronized mass nesting event and eventually their survival.
  3. Mishra M, Desul S, Santos CAG, Mishra SK, Kamal AHM, Goswami S, et al.
    Environ Dev Sustain, 2023 May 07.
    PMID: 37362966 DOI: 10.1007/s10668-023-03225-w
    The Sustainable Development Goals (SDGs) are a global appeal to protect the environment, combat climate change, eradicate poverty, and ensure access to a high quality of life and prosperity for all. The next decade is crucial for determining the planet's direction in ensuring that populations can adapt to climate change. This study aims to investigate the progress, challenges, opportunities, trends, and prospects of the SDGs through a bibliometric analysis from 2015 to 2022, providing insight into the evolution and maturity of scientific research in the field. The Web of Science core collection citation database was used for the bibliometric analysis, which was conducted using VOSviewer and RStudio. We analyzed 12,176 articles written in English to evaluate the present state of progress, as well as the challenges and opportunities surrounding the SDGs. This study utilized a variety of methods to identify research hotspots, including analysis of keywords, productive researchers, and journals. In addition, we conducted a comprehensive literature review by utilizing the Web of Science database. The results show that 31% of SDG-related research productivity originates from the USA, China, and the UK, with an average citation per article of 15.06. A total of 45,345 authors around the world have contributed to the field of SDGs, and collaboration among authors is also quite high. The core research topics include SDGs, climate change, Agenda 2030, the circular economy, poverty, global health, governance, food security, sub-Saharan Africa, the Millennium Development Goals, universal health coverage, indicators, gender, and inequality. The insights gained from this analysis will be valuable for young researchers, practitioners, policymakers, and public officials as they seek to identify patterns and high-quality articles related to SDGs. By advancing our understanding of the subject, this research has the potential to inform and guide future efforts to promote sustainable development. The findings indicate a concentration of research and development on SDGs in developed countries rather than in developing and underdeveloped countries.
  4. Jain L, Pradhan S, Aggarwal A, Padhi BK, Itumalla R, Khatib MN, et al.
    JMIR Public Health Surveill, 2024 May 24;10:e41567.
    PMID: 38787607 DOI: 10.2196/41567
    BACKGROUND: Undernutrition among children younger than 5 years is a subtle indicator of a country's health and economic status. Despite substantial macroeconomic progress in India, undernutrition remains a significant burden with geographical variations, compounded by poor access to water, sanitation, and hygiene services.

    OBJECTIVE: This study aimed to explore the spatial trends of child growth failure (CGF) indicators and their association with household sanitation practices in India.

    METHODS: We used data from the Indian Demographic and Health Surveys spanning 1998-2021. District-level CGF indicators (stunting, wasting, and underweight) were cross-referenced with sanitation and sociodemographic characteristics. Global Moran I and Local Indicator of Spatial Association were used to detect spatial clustering of the indicators. Spatial regression models were used to evaluate the significant determinants of CGF indicators.

    RESULTS: Our study showed a decreasing trend in stunting (44.9%-38.4%) and underweight (46.7%-35.7%) but an increasing prevalence of wasting (15.7%-21.0%) over 15 years. The positive values of Moran I between 1998 and 2021 indicate the presence of spatial autocorrelation. Geographic clustering was consistently observed in the states of Madhya Pradesh, Jharkhand, Odisha, Uttar Pradesh, Chhattisgarh, West Bengal, Rajasthan, Bihar, and Gujarat. Improved sanitation facilities, a higher wealth index, and advanced maternal education status showed a significant association in reducing stunting. Relative risk maps identified hotspots of CGF health outcomes, which could be targeted for future interventions.

    CONCLUSIONS: Despite numerous policies and programs, malnutrition remains a concern. Its multifaceted causes demand coordinated and sustained interventions that go above and beyond the usual. Identifying hotspot locations will aid in developing control methods for achieving objectives in target areas.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links