Displaying all 3 publications

Abstract:
Sort:
  1. Sandu AV, Vasilache V, Sandu IG, Sieliechi JM, Kouame IK, Matasaru PD, et al.
    Materials (Basel), 2019 Nov 21;12(23).
    PMID: 31766445 DOI: 10.3390/ma12233836
    The paper presents the results of ample investigations performed on industrial and traditional ceramics of fired clay used in processes of water potabilization in the last stage of filtration, after that of active charcoal. Using the data obtained through the scanning electron microscope coupled with energy dispersive X-ray analysis (SEM-EDX) and pH analyses, on the basis of the atomic composition and free concentration of hydronium ions, the normal caustic (Si/Al) and summative [(Si+Ti+FeIII+Cl)/(Al+Ca+Mg+Na+K)] modules were assessed, which were correlated with the free acidity and, respectively, the capacity of absorption and ionic exchange of the Fe3+ and Al3+ ions. The study allowed the selection, on the basis of the caustic module, of the ceramics with high capacity for ionic exchange.
  2. Hashim AN, Salleh MAAM, Ramli MM, Abdullah MMAB, Sandu AV, Vizureanu P, et al.
    Materials (Basel), 2023 Feb 24;16(5).
    PMID: 36902968 DOI: 10.3390/ma16051852
    This paper presents an assessment of the effect of isothermal annealing of Sn whisker growth behavior on the surface of Sn0.7Cu0.05Ni solder joints using the hot-dip soldering technique. Sn0.7Cu and Sn0.7Cu0.05Ni solder joints with a similar solder coating thickness was aged up to 600 h in room temperature and annealed under 50 °C and 105 °C conditions. Through the observations, the significant outcome was the suppressing effect of Sn0.7Cu0.05Ni on Sn whisker growth in terms of density and length reduction. The fast atomic diffusion of isothermal annealing consequently reduced the stress gradient of Sn whisker growth on the Sn0.7Cu0.05Ni solder joint. It was also established that the smaller (Cu,Ni)6Sn5 grain size and stability characteristic of hexagonal η-Cu6Sn5 considerably contribute to the residual stress diminished in the (Cu,Ni)6Sn5 IMC interfacial layer and are able to suppress the growth of Sn whiskers on the Sn0.7Cu0.05Ni solder joint. The findings of this study provide environmental acceptance with the aim of suppressing Sn whisker growth and upsurging the reliability of the Sn0.7Cu0.05Ni solder joint at the electronic-device-operation temperature.
  3. Mustapa NB, Ahmad R, Ibrahim WMW, Abdullah MMAB, Wattanasakulpong N, Nemeș O, et al.
    Materials (Basel), 2023 May 31;16(11).
    PMID: 37297236 DOI: 10.3390/ma16114103
    Globally, there is an increasing need for ceramic materials that have a variety of applications in the environment, for precision tools, and for the biomedical, electronics, and environmental industries. However, in order to obtain remarkable mechanical qualities, ceramics have to be manufactured at a high temperature of up to 1600 °C over a long heating period. Furthermore, the conventional approach presents issues with agglomeration, irregular grain growth, and furnace pollution. Many researchers have developed an interest in using geopolymer to produce ceramic materials, focusing on improving the performances of geopolymer ceramics. In addition to helping to lower the sintering temperature, it also improves the strength and other properties of the ceramics. Geopolymer is a product of polymerization involving aluminosilicate sources such as fly ash, metakaolin, kaolin, and slag through activation using an alkaline solution. The sources of the raw materials, the ratio of the alkaline solution, the sintering time, the calcining temperature, the mixing time, and the curing time may have significant impacts on the qualities. Therefore, this review aims to study the effects of sintering mechanisms on the crystallization of geopolymer ceramics, concerning the strength achieved. A future research opportunity is also presented in this review.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links