Various pre-treatment techniques change the physical and chemical structure of the lignocellulosic biomass and improve hydrolysis rates. The effect of ultrasonic pre-treatment on oil palm empty fruit bunch (OPEFB) fibre prior to acid hydrolysis has been evaluated. The main objective of this study was to determine if ultrasonic pre-treatment could function as a pre-treatment method for the acid hydrolysis of OPEFB fibre at a low temperature and pressure. Hydrolysis at a low temperature was studied using 2% sulphuric acid; 1:25 solid liquid ratio and 100 degrees C operating temperature. A maximum xylose yield of 58% was achieved when the OPEFB fibre was ultrasonicated at 90% amplitude for 45min. In the absence of ultrasonic pre-treatment only 22% of xylose was obtained. However, no substantial increase of xylose formation was observed for acid hydrolysis at higher temperatures of 120 and 140 degrees C on ultrasonicated OPEFB fibre. The samples were then analysed using a scanning electron microscope (SEM) to describe the morphological changes of the OPEFB fibre. The SEM observations show interesting morphological changes within the OPEFB fibre for different acid hydrolysis conditions.
Introduction:Pereskia bleo is a leafy and edible plant, locally known as "Pokok Jarum Tujuh Bilah" which has anticancer properties. This study purposed to determine the cytotoxic effects of P. bleo leaves extracts on several well-known cancer cells and elucidate its underlying mechanism in inducing cell death.Methods: Cytotoxic activity on selected cell lines was determined using MTT assay. Mechanism of cell death was investigated through cell cycle and Annexin V assay. Expression of apoptotic proteins was measured by flow cytometry method.Results: Ethyl acetate extract of P. bleo leaves (PBEA) appeared to have the strongest IC50 value (14.37 ± 8.40 μg/ml) and most active against HeLa cells was further studied for apoptosis. The cell cycle investigation by flow cytometry evidenced the increment of PBEA treated HeLa cells in G0/G1 phase and apoptotic event was detected in Annexin V assay. Analysis of apoptotic protein showed pro-apoptotic proteins (Bax, p53 and caspase 3) were triggered where as anti-apoptotic protein Bcl-2 was suppressed in treated HeLa cells.Conclusions: Our findings demonstrated that PBEA treatment induced cell death in HeLa cells by p53-mediated mechanism through arresting cell cycle at G0/G1 phase and mitochondrial-mediated pathway with involvement of pro-apoptotic proteins, anti-apoptotic protein, and caspase 3.
This work investigates the effect of heterocyst toward biohydrogen production by A. variabilis. The heterocyst frequency was artificially promoted by adding an amino acid analog, in this case DL-7-azatryptophan into the growth medium. The frequency of heterocyst differentiation was found to be proportional to the concentration of azatryptophan (0-25 µM) in the medium. Conversely, the growth and nitrogenase activity were gradually suppressed. In addition, there was also a distinct shortening of the cells filaments and detachment of heterocyst from the vegetative cells. Analysis on the hydrogen production performance revealed that both the frequency and distribution of heterocyst in the filaments affected the rate of hydrogen production. The highest hydrogen production rate and yield (41 µmol H2 mg chl a(-1) h(-1) and 97 mL H2 mg chl a(-1), respectively) were achieved by cells previously grown in 15 µM of azatryptophan with 14.5 % of heterocyst frequency. The existence of more isolated heterocyst has been shown to cause a relative loss in nitrogenase activity thus lowering the hydrogen production rate.
Hydrogen production by cyanobacteria could be one of the promising energy resources in the future. However, there is very limited information regarding the kinetic modeling of hydrogen production by cyanobacteria available in the literature. To provide an in-depth understanding of the biological system involved during the process, the Haldane's noncompetitive inhibition equation has been modified to determine the specific hydrogen production rate (HPR) as a function of both dissolved CO2 concentration (CTOT) and oxygen production rate (OPR). The highest HPR of 15 [Formula: see text] was found at xCO2 of 5% vol/vol and the rate consequently decreased when the CTOT and OPR were 0.015 k mol m(-3) and 0.55 mL h(-1), respectively. The model provided a fairly good estimation of the HPR with respect to the experimental data collected.
In the present work, the influence of geographical location on the fatty acid profiles, antioxidant potential, as well as cytotoxicity of edible dabai fruit fractions (kernel, skin, and pulp) were analyzed. The fatty acid profiles were determined by Gas Chromatography (GC), and the antioxidant activity was quantified with free 2,2-diphenyl-1-picr/ylhdrazyl, while the cytotoxicity was assessed by the brine shrimp lethality test. The results showed that the samples from Sibu, Serian, and Kapit geographical locations had a high content of the saturated fatty acids, ranging from 46.63% to 53.31% in the three fractions. The highest mono-saturated fatty acids (MUFA) content was found in Sibu. Serian and Kapit kernel fractions MUFA, however, ranged from 21.2% to 45.91%. No fatty acid composition was detected in Bentong and Kanowit. The fatty acid composition and DPPH free radical scavenging antioxidant activity of dabai were statistically independent using a multivariate analysis in different localities in Malaysia. The skin fraction had a more appreciable antioxidant potential and toxicity level than the pulp and kernel fractions. The highest antioxidant activity (EC50 198.76 ± 1.06 µg/mL) with an LC50 value of 1387.22 µg/mL was obtained from the Sibu skin fraction. Therefore, the fatty acid composition, antioxidant, as well as cytotoxicity analyses of the extracts from different localities indicated that "geographical location" remarkably influenced fatty acid composition, antioxidant activity, and toxicity.