Material and Methods: This experimental study involved 225 bone specimens prepared from discarded bone fragments during a series of 45 knee and hip arthroplasty surgeries. The bone fragments were cut into five identical cubes and were randomly assigned to either control (positive or negative), or experimental groups (0.5% chlorhexidine, 10% povidone-iodine or 70% alcohol). The control negative was to determine pre-contamination culture. All bone specimens, except the control negative group were uniformly contaminated by dropping on the operation theatre floor. Subsequently, the dropped bone specimens except for the control positive group, were disinfected by immersing in a respective antiseptic solution for 10 minutes, before transported to the microbiology laboratory for incubation.
Results: The incidence of a positive culture from a dropped bone fragment was 86.5%. From the 37 specimens sent for each group, the incidence of positive culture was 5.4% (2 specimens) after being disinfected using chlorhexidine, 67.6% (25 specimens) using povidone-iodine and 81.1% (30 specimens) using alcohol. Simple logistic regression analysis demonstrated that chlorhexidine was significantly effective in disinfecting contaminated bones (p-value <0.001, odd ratio 0.009). Povidone-iodine and alcohol were not statistically significant (p-value 0.059 and 0.53, respectively). Organisms identified were Bacillus species and coagulase negative Staphylococcus. No gram-negative bacteria were isolated.
Conclusion: A total of 0.5% chlorhexidine is effective and superior in disinfecting contaminated bones.
Design: Anterior cruciate ligament transection (ACLT) was performed to induce OA in thirty-three male New Zealand white rabbits and were randomly divided into three groups: Channa, glucosamine, and control group. The control group received drinking water and the Channa and glucosamine groups were orally administered with 51.4 mg/kg of Channa extract and 77.5 mg/kg of glucosamine sulphate in drinking water, respectively, for eight weeks and then sacrificed. The articular cartilage was evaluated macroscopically and histologically using semiquantitative and quantitative methods. Serum cartilage oligomeric matric protein (COMP), cyclooxygenase 2 (COX-2) enzyme, and prostaglandin E2 (PGE2) were also determined.
Results: Macroscopic analysis revealed that Channa group have a significantly lower severity grade of total macroscopic score compared to the control (p < 0.001) and glucosamine (p < 0.05) groups. Semiquantitative histology scoring showed that both Channa and glucosamine groups had lower severity grading of total histology score compared to the control group (p < 0.001). In comparison with the control, Channa group had lower histopathological changes in three compartments of the joint compared to glucosamine group which had lower histological scoring in two compartments only. The cartilage thickness, area, and roughness of both Channa (p < 0.05) and glucosamine (p < 0.05) groups were superior compared to the control group. However, the Channa group demonstrated significantly less cartilage roughness compared to the glucosamine group (p < 0.05). Serum COMP levels were lower in both Channa (p < 0.05) and glucosamine (p < 0.05) groups compared to the control group.
Conclusion: Both oral administration of Channa extract and glucosamine exhibited chondroprotective action on an ACLT OA-induced rabbit model. However, Channa was superior to glucosamine in maintaining the structure of the cartilage.