Displaying all 2 publications

Abstract:
Sort:
  1. Rupert R, Rodrigues KF, Chong HLH, Yong WTL
    Data Brief, 2022 Feb;40:107784.
    PMID: 35028352 DOI: 10.1016/j.dib.2021.107784
    The data provided in the article contains bacterial community profiles present on the surface of red algae (Kappaphycus alvarezii) isolated directly after collection and after 30 days of cultivation in a closed circulation system. The explants of Kappaphycus alvarezii were cultivated in a laboratory setting under controlled growth conditions for 30 days in order to determine bacteria that could adapt to controlled culture conditions. Amplification and sequencing of bacterial 16S rDNA amplicon were performed on bacterial isolates associated with the seedlings. The 16S rDNA gene sequences were analyzed, trimmed, and assembled into contigs using DNA Baser Sequence Assembler (V5) software. Taxonomic identification for the assembled sequences was achieved using the online BLAST (blastn) algorithm, and the construction of a phylogenetic tree was performed using the MEGA7 software. The data reveals a distinct set of microbial variations between day one and day 30. The phylogenetic tree depicts four major clusters, Vibrio, Pseudoalteromonas, Alteromonas, and Bacterioplanes resident on the surface of the K. alvarezii. Comparison between these two bacterial groups provides evidence of the persistent marine bacteria that adapt to the long-term culture in closed circulation systems. Raw data files are available at the GenBank, NCBI database under the accession number of MZ570560 to MZ570580.
  2. Rupert R, Lie GJCW, John DV, Annammala KV, Jani J, Rodrigues KF
    Data Brief, 2020 Dec;33:106351.
    PMID: 33072827 DOI: 10.1016/j.dib.2020.106351
    The data provided in the article includes the sequence of bacterial 16S rRNA gene from a high conservation value forest, logged forest, rubber plantation and oil palm plantation collected at Kelantan river basin. The logged forest area was previously notified as a flooding region. The total gDNA of bacterial community was amplified via polymerase chain reaction at V3-V4 regions using a pair of specific universal primer. Amplicons were sequenced on Illumina HiSeq paired-end platform to generate 250 bp paired-end raw reads. Several bioinformatics tools such as FLASH, QIIME and UPARSE were used to process the reads generated for OTU analysis. Meanwhile, R&D software was used to construct the taxonomy tree for all samples. Raw data files are available at the Sequence Read Archive (SRA), NCBI and data information can be found at the BioProject and BioSample, NCBI. The data shows the comparison of bacterial community between the natural forest and different land uses.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links