Displaying all 5 publications

Abstract:
Sort:
  1. Abdul-Latiff MA, Ruslin F, Fui VV, Abu MH, Rovie-Ryan JJ, Abdul-Patah P, et al.
    Zookeys, 2014.
    PMID: 24899832 DOI: 10.3897/zookeys.407.6982
    Phylogenetic relationships among Malaysia's long-tailed macaques have yet to be established, despite abundant genetic studies of the species worldwide. The aims of this study are to examine the phylogenetic relationships of Macaca fascicularis in Malaysia and to test its classification as a morphological subspecies. A total of 25 genetic samples of M. fascicularis yielding 383 bp of Cytochrome b (Cyt b) sequences were used in phylogenetic analysis along with one sample each of M. nemestrina and M. arctoides used as outgroups. Sequence character analysis reveals that Cyt b locus is a highly conserved region with only 23% parsimony informative character detected among ingroups. Further analysis indicates a clear separation between populations originating from different regions; the Malay Peninsula versus Borneo Insular, the East Coast versus West Coast of the Malay Peninsula, and the island versus mainland Malay Peninsula populations. Phylogenetic trees (NJ, MP and Bayesian) portray a consistent clustering paradigm as Borneo's population was distinguished from Peninsula's population (99% and 100% bootstrap value in NJ and MP respectively and 1.00 posterior probability in Bayesian trees). The East coast population was separated from other Peninsula populations (64% in NJ, 66% in MP and 0.53 posterior probability in Bayesian). West coast populations were divided into 2 clades: the North-South (47%/54% in NJ, 26/26% in MP and 1.00/0.80 posterior probability in Bayesian) and Island-Mainland (93% in NJ, 90% in MP and 1.00 posterior probability in Bayesian). The results confirm the previous morphological assignment of 2 subspecies, M. f. fascicularis and M. f. argentimembris, in the Malay Peninsula. These populations should be treated as separate genetic entities in order to conserve the genetic diversity of Malaysia's M. fascicularis. These findings are crucial in aiding the conservation management and translocation process of M. fascicularis populations in Malaysia.
  2. Liedigk R, Kolleck J, Böker KO, Meijaard E, Md-Zain BM, Abdul-Latiff MA, et al.
    BMC Genomics, 2015 Mar 21;16:222.
    PMID: 25887664 DOI: 10.1186/s12864-015-1437-0
    BACKGROUND: Long-tailed macaques (Macaca fascicularis) are an important model species in biomedical research and reliable knowledge about their evolutionary history is essential for biomedical inferences. Ten subspecies have been recognized, of which most are restricted to small islands of Southeast Asia. In contrast, the common long-tailed macaque (M. f. fascicularis) is distributed over large parts of the Southeast Asian mainland and the Sundaland region. To shed more light on the phylogeny of M. f. fascicularis, we sequenced complete mitochondrial (mtDNA) genomes of 40 individuals from all over the taxon's range, either by classical PCR-amplification and Sanger sequencing or by DNA-capture and high-throughput sequencing.

    RESULTS: Both laboratory approaches yielded complete mtDNA genomes from M. f. fascicularis with high accuracy and/or coverage. According to our phylogenetic reconstructions, M. f. fascicularis initially diverged into two clades 1.70 million years ago (Ma), with one including haplotypes from mainland Southeast Asia, the Malay Peninsula and North Sumatra (Clade A) and the other, haplotypes from the islands of Bangka, Java, Borneo, Timor, and the Philippines (Clade B). The three geographical populations of Clade A appear as paraphyletic groups, while local populations of Clade B form monophyletic clades with the exception of a Philippine individual which is nested within the Borneo clade. Further, in Clade B the branching pattern among main clades/lineages remains largely unresolved, most likely due to their relatively rapid diversification 0.93-0.84 Ma.

    CONCLUSIONS: Both laboratory methods have proven to be powerful to generate complete mtDNA genome data with similarly high accuracy, with the DNA-capture and high-throughput sequencing approach as the most promising and only practical option to obtain such data from highly degraded DNA, in time and with relatively low costs. The application of complete mtDNA genomes yields new insights into the evolutionary history of M. f. fascicularis by providing a more robust phylogeny and more reliable divergence age estimations than earlier studies.

  3. Mohd Salleh F, Ramos-Madrigal J, Peñaloza F, Liu S, Mikkel-Holger SS, Riddhi PP, et al.
    Gigascience, 2017 08 01;6(8):1-8.
    PMID: 28873965 DOI: 10.1093/gigascience/gix053
    Southeast (SE) Asia is 1 of the most biodiverse regions in the world, and it holds approximately 20% of all mammal species. Despite this, the majority of SE Asia's genetic diversity is still poorly characterized. The growing interest in using environmental DNA to assess and monitor SE Asian species, in particular threatened mammals-has created the urgent need to expand the available reference database of mitochondrial barcode and complete mitogenome sequences. We have partially addressed this need by generating 72 new mitogenome sequences reconstructed from DNA isolated from a range of historical and modern tissue samples. Approximately 55 gigabases of raw sequence were generated. From this data, we assembled 72 complete mitogenome sequences, with an average depth of coverage of ×102.9 and ×55.2 for modern samples and historical samples, respectively. This dataset represents 52 species, of which 30 species had no previous mitogenome data available. The mitogenomes were geotagged to their sampling location, where known, to display a detailed geographical distribution of the species. Our new database of 52 taxa will strongly enhance the utility of environmental DNA approaches for monitoring mammals in SE Asia as it greatly increases the likelihoods that identification of metabarcoding sequencing reads can be assigned to reference sequences. This magnifies the confidence in species detections and thus allows more robust surveys and monitoring programmes of SE Asia's threatened mammal biodiversity. The extensive collections of historical samples from SE Asia in western and SE Asian museums should serve as additional valuable material to further enrich this reference database.
  4. van Vliet E, Dijkema GH, Schuit E, Heida KY, Roos C, van der Post J, et al.
    BJOG, 2016 Oct;123(11):1753-60.
    PMID: 27550838 DOI: 10.1111/1471-0528.14249
    BACKGROUND: Preterm birth is the leading cause of neonatal mortality and morbidity in developed countries. Whether continued tocolysis after 48 hours of rescue tocolysis improves neonatal outcome is unproven.

    OBJECTIVES: To evaluate the effectiveness of maintenance tocolytic therapy with oral nifedipine on the reduction of adverse neonatal outcomes and the prolongation of pregnancy by performing an individual patient data meta-analysis (IPDMA).

    SEARCH STRATEGY: We searched PubMed, Embase, and Cochrane databases for randomised controlled trials of maintenance tocolysis therapy with nifedipine in preterm labour.

    SELECTION CRITERIA: We selected trials including pregnant women between 24 and 36(6/7)  weeks of gestation (gestational age, GA) with imminent preterm labour who had not delivered after 48 hours of initial tocolysis, and compared maintenance nifedipine tocolysis with placebo/no treatment.

    DATA COLLECTION AND ANALYSIS: The primary outcome was perinatal mortality. Secondary outcome measures were intraventricular haemorrhage (IVH), necrotising enterocolitis (NEC), infant respiratory distress syndrome (IRDS), prolongation of pregnancy, GA at delivery, birthweight, neonatal intensive care unit admission, and number of days on ventilation support. Pre-specified subgroup analyses were performed.

    MAIN RESULTS: Six randomised controlled trials were included in this IPDMA, encompassing data from 787 patients (n = 390 for nifedipine; n = 397 for placebo/no treatment). There was no difference between the groups for the incidence of perinatal death (risk ratio, RR 1.36; 95% confidence interval, 95% CI 0.35-5.33), intraventricular haemorrhage (IVH) ≥ grade II (RR 0.65; 95% CI 0.16-2.67), necrotising enterocolitis (NEC) (RR 1.15; 95% CI 0.50-2.65), infant respiratory distress syndrome (IRDS) (RR 0.98; 95% CI 0.51-1.85), and prolongation of pregnancy (hazard ratio, HR 0.74; 95% CI 0.55-1.01).

    CONCLUSION: Maintenance tocolysis is not associated with improved perinatal outcome and is therefore not recommended for routine practice.

    TWEETABLE ABSTRACT: Nifedipine maintenance tocolysis is not associated with improved perinatal outcome or pregnancy prolongation.

  5. Nater A, Mattle-Greminger MP, Nurcahyo A, Nowak MG, de Manuel M, Desai T, et al.
    Curr Biol, 2017 Nov 20;27(22):3487-3498.e10.
    PMID: 29103940 DOI: 10.1016/j.cub.2017.09.047
    Six extant species of non-human great apes are currently recognized: Sumatran and Bornean orangutans, eastern and western gorillas, and chimpanzees and bonobos [1]. However, large gaps remain in our knowledge of fine-scale variation in hominoid morphology, behavior, and genetics, and aspects of great ape taxonomy remain in flux. This is particularly true for orangutans (genus: Pongo), the only Asian great apes and phylogenetically our most distant relatives among extant hominids [1]. Designation of Bornean and Sumatran orangutans, P. pygmaeus (Linnaeus 1760) and P. abelii (Lesson 1827), as distinct species occurred in 2001 [1, 2]. Here, we show that an isolated population from Batang Toru, at the southernmost range limit of extant Sumatran orangutans south of Lake Toba, is distinct from other northern Sumatran and Bornean populations. By comparing cranio-mandibular and dental characters of an orangutan killed in a human-animal conflict to those of 33 adult male orangutans of a similar developmental stage, we found consistent differences between the Batang Toru individual and other extant Ponginae. Our analyses of 37 orangutan genomes provided a second line of evidence. Model-based approaches revealed that the deepest split in the evolutionary history of extant orangutans occurred ∼3.38 mya between the Batang Toru population and those to the north of Lake Toba, whereas both currently recognized species separated much later, about 674 kya. Our combined analyses support a new classification of orangutans into three extant species. The new species, Pongo tapanuliensis, encompasses the Batang Toru population, of which fewer than 800 individuals survive. VIDEO ABSTRACT.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links