Displaying all 2 publications

Abstract:
Sort:
  1. Reza MS, Ahmed A, Caesarendra W, Abu Bakar MS, Shams S, Saidur R, et al.
    Bioengineering (Basel), 2019 Apr 16;6(2).
    PMID: 30995765 DOI: 10.3390/bioengineering6020033
    To evaluate the possibilities for biofuel and bioenergy production Acacia Holosericea, which is an invasive plant available in Brunei Darussalam, was investigated. Proximate analysis of Acacia Holosericea shows that the moisture content, volatile matters, fixed carbon, and ash contents were 9.56%, 65.12%, 21.21%, and 3.91%, respectively. Ultimate analysis shows carbon, hydrogen, and nitrogen as 44.03%, 5.67%, and 0.25%, respectively. The thermogravimetric analysis (TGA) results have shown that maximum weight loss occurred for this biomass at 357 °C for pyrolysis and 287 °C for combustion conditions. Low moisture content (<10%), high hydrogen content, and higher heating value (about 18.13 MJ/kg) makes this species a potential biomass. The production of bio-char, bio-oil, and biogas from Acacia Holosericea was found 34.45%, 32.56%, 33.09% for 500 °C with a heating rate 5 °C/min and 25.81%, 37.61%, 36.58% with a heating rate 10 °C/min, respectively, in this research. From Fourier transform infrared (FTIR) spectroscopy it was shown that a strong C-H, C-O, and C=C bond exists in the bio-char of the sample.
  2. Kotha AA, Ahmad SU, Dewan I, Bhuiyan MA, Rahman FI, Naina Mohamed I, et al.
    Drug Des Devel Ther, 2023;17:3661-3684.
    PMID: 38084128 DOI: 10.2147/DDDT.S432790
    BACKGROUND: Metformin hydrochloride (HCl) microspheres and nanoparticles were formulated to enhance bioavailability and minimize side effects through sustained action and optimized drug-release characteristics. Initially, the same formulation design with different ratios of metformin HCl and Eudragit RSPO was used to formulate four batches of microspheres and nanoparticles using solvent evaporation and nanoprecipitation methods, respectively.

    METHODS: The produced formulations were evaluated based on particle size and shape (particle size distribution (PSD), scanning electron microscope (SEM)), incompatibility (differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR)), drug release pattern, permeation behavior, in vivo hypoglycemic effects, and in vitro anticancer potential.

    RESULTS: Compatibility studies concluded that there was minimal interaction between metformin HCl and the polymer, whereas SEM images revealed smoother, more spherical nanoparticles than microspheres. Drug release from the formulations was primarily controlled by the non-Fickian diffusion process, except for A1 and A4 by Fickian, and B3 by Super case II. Korsmeyer-Peppas was the best-fit model for the maximum formulations. The best formulations of microspheres and nanoparticles, based on greater drug release, drug entrapment, and compatibility characteristics, were attributed to the study of drug permeation by non-everted intestinal sacs, in vivo anti-hyperglycemic activity, and in vitro anticancer activity.

    CONCLUSION: This study suggests that the proposed metformin HCl formulation can dramatically reduce hyperglycemic conditions and may also have anticancer potential.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links