Displaying all 4 publications

Abstract:
Sort:
  1. Rendana M, Idris WMR
    J Infect Public Health, 2021 Oct;14(10):1320-1327.
    PMID: 34175236 DOI: 10.1016/j.jiph.2021.05.019
    BACKGROUND: World Health Organization has reported fifty countries have now detected the new coronavirus (B.1.1.7 variant) since a couple of months ago. In Indonesia, the B.1.1.7 cases have been found in several provinces since January 2021, although they are still in a lower number than the old variant of COVID-19. Therefore, this study aims to create a forecast analysis regarding the occasions of COVID-19 and B.1.1.7 cases based on data from the 1st January to 18th March 2021, and also analyze the association between meteorological factors with B.1.1.7 incidences in three different provinces of Indonesia such as the West Java, South Sumatra and East Kalimantan.

    METHODS: We used the Autoregressive Moving Average Models (ARIMA) to forecast the number of cases in the upcoming 14 days and the Spearman correlation analysis to analyze the relationship between B.1.1.7 cases and meteorological variables such as temperature, humidity, rainfall, sunshine, and wind speed.

    RESULTS: The results of the study showed the fitted ARIMA models forecasted there was an increase in the daily cases in three provinces. The total cases in three provinces would increase by 36% (West Java), 13.5% (South Sumatra), and 30% (East Kalimantan) as compared with actual cases until the end of 14 days later. The temperature, rainfall and sunshine factors were the main contributors for B.1.1.7 cases with each correlation coefficients; r = -0.230; p < 0.05, r = 0.211; p < 0.05 and r = -0.418; p < 0.01, respectively.

    CONCLUSIONS: We recapitulated that this investigation was the first preliminary study to analyze a short-term forecast regarding COVID-19 and B.1.1.7 cases as well as to determine the associated meteorological factors that become primary contributors to the virus spread.

  2. Rendana M, Idris WMR, Rahim SA
    Environ Monit Assess, 2022 Dec 17;195(1):205.
    PMID: 36527450 DOI: 10.1007/s10661-022-10833-y
    Mining activities in the Chini Lake catchment area have been extensive for several years, contributing to acid mine drainage (AMD) events with high concentrations of iron (Fe) and other heavy metals impacting the surface water. However, during the restriction period due to the COVID-19 outbreak, anthropogenic activities have been suspended, which clearly shows a good opportunity for a better environment. Therefore, we aimed to analyze the variation of AMD-associated water pollution in three main zones of the Chini Lake catchment area using Sentinel-2 data for the periods pre-movement control order (MCO), during MCO, and post-MCO from 2019 to 2021. These three zones were chosen due to their proximity to mining areas: zone 1 in the northeastern part, zone 2 in the southeastern part, and zone 3 in the southern part of the Chini Lake area. The acid mine water index (AMWI) was a specific index used to estimate acid mine water. The AMWI values from Sentinel-2 images exhibited that the mean AMWI values in all zones during the MCO period decreased by 14% compared with the pre-MCO period. The spatiotemporal analysis found that the highest polluted zones were recorded in zone 1, followed by zone 3 and zone 2. As compared with during the MCO period, the maximum percentage of increment during post-MCO in all zones was up to 25%. The loosened restriction policy has resulted in more AMD flowing into surface water and increased pollution in Chini Lake. As a whole, our outputs revealed that Sentinel-2 data had a major potential for assessing the AMD-associated pollution of water.
  3. Rendana M, Idris WMR, Abdul Rahim S
    J Infect Public Health, 2021 Oct;14(10):1340-1348.
    PMID: 34301503 DOI: 10.1016/j.jiph.2021.07.010
    Currently, many countries all over the world are facing the second wave of COVID-19. Therefore, this study aims to analyze the spatial distribution of COVID-19 cases, epidemic spread rate, spatial pattern during the first to the second waves in the South Sumatra Province of Indonesia. This study used the geographical information system (GIS) software to map the spatial distribution of COVID-19 cases and epidemic spread rate. The spatial autocorrelation of the COVID-19 cases was carried out using Moran's I, while the Pearson correlation was used to examining the relationship between meteorological factors and the epidemic spread rate. Most infected areas and the direction of virus spread were predicted using wind rose analysis. The results revealed that the epidemic rapidly spread from August 1 to December 1, 2020. The highest epidemic spread rate was observed in the Palembang district and in its peripheral areas (dense urban areas), while the lowest spread rate was found in the eastern and southern parts of South Sumatra Province (remote areas). The spatial correlation characteristic of the epidemic distribution exhibited a negative correlation and random distribution. Air temperature, wind speed, and precipitation have contributed to a significant impact on the high epidemic spread rate in the second wave. In summary, this study offers new insight for arranging control and prevention strategies against the potential of second wave strike.
  4. Rendana M, Idris WMR, Rahim SA, Rahman ZA, Lihan T
    Geosci Lett, 2023;10(1):1.
    PMID: 36619610 DOI: 10.1186/s40562-022-00254-7
    Climate change and soil erosion are very associated with environmental defiance which affects the life sustainability of humans. However, the potency effects of both events in tropical regions are arduous to be estimated due to atmospheric conditions and unsustainable land use management. Therefore, several models can be used to predict the impacts of distinct climate scenarios on human and environmental relationships. In this study, we aimed to predict current and future soil erosion potential in the Chini Lake Basin, Malaysia under different Climate Model Intercomparison Project-6 (CMIP6) scenarios (e.g., SSP2.6, SSP4.5, and SSP8.5). Our results found the predicted mean soil erosion values for the baseline scenario (2019-2021) was around 50.42 t/ha year. The mining areas recorded the highest soil erosion values located in the southeastern part. The high future soil erosion values (36.15 t/ha year) were obtained for SSP4.5 during 2060-2080. Whilst, the lowest values (33.30 t/ha year) were obtained for SSP2.6 during 2040-2060. According to CMIP6, the future soil erosion potential in the study area would reduce by approximately 33.9% compared to the baseline year (2019-2021). The rainfall erosivity factor majorly affected soil erosion potential in the study area. The output of the study will contribute to achieving the United Nations' 2030 Agenda for Sustainable Development.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links