Displaying all 12 publications

Abstract:
Sort:
  1. Mensa-Vilaró A, Bravo García-Morato M, de la Calle-Martin O, Franco-Jarava C, Martínez-Saavedra MT, González-Granado LI, et al.
    J Allergy Clin Immunol, 2019 Jan;143(1):359-368.
    PMID: 30273710 DOI: 10.1016/j.jaci.2018.09.009
    BACKGROUND: Postzygotic de novo mutations lead to the phenomenon of gene mosaicism. The 3 main types are called somatic, gonadal, and gonosomal mosaicism, which differ in terms of the body distribution of postzygotic mutations. Mosaicism has been reported occasionally in patients with primary immunodeficiency diseases (PIDs) since the early 1990s, but its real involvement has not been systematically addressed.

    OBJECTIVE: We sought to investigate the incidence of gene mosaicism in patients with PIDs.

    METHODS: The amplicon-based deep sequencing method was used in the 3 parts of the study that establish (1) the allele frequency of germline variants (n = 100), (2) the incidence of parental gonosomal mosaicism in families with PIDs with de novo mutations (n = 92), and (3) the incidence of mosaicism in families with PIDs with moderate-to-high suspicion of gene mosaicism (n = 36). Additional investigations evaluated body distribution of postzygotic mutations, their stability over time, and their characteristics.

    RESULTS: The range of allele frequency (44.1% to 55.6%) was established for germline variants. Those with minor allele frequencies of less than 44.1% were assumed to be postzygotic. Mosaicism was detected in 30 (23.4%) of 128 families with PIDs, with a variable minor allele frequency (0.8% to 40.5%). Parental gonosomal mosaicism was detected in 6 (6.5%) of 92 families with de novo mutations, and a high incidence of mosaicism (63.9%) was detected among families with moderate-to-high suspicion of gene mosaicism. In most analyzed cases mosaicism was found to be both uniformly distributed and stable over time.

    CONCLUSION: This study represents the largest performed to date to investigate mosaicism in patients with PIDs, revealing that it affects approximately 25% of enrolled families. Our results might have serious consequences regarding treatment and genetic counseling and reinforce the use of next-generation sequencing-based methods in the routine analyses of PIDs.

  2. Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2023 Sep 01;131(9):091903.
    PMID: 37721839 DOI: 10.1103/PhysRevLett.131.091903
    A search for the rare η→μ^{+}μ^{-}μ^{+}μ^{-} double-Dalitz decay is performed using a sample of proton-proton collisions, collected by the CMS experiment at the CERN LHC with high-rate muon triggers during 2017 and 2018 and corresponding to an integrated luminosity of 101  fb^{-1}. A signal having a statistical significance well in excess of 5 standard deviations is observed. Using the η→μ^{+}μ^{-} decay as normalization, the branching fraction B(η→μ^{+}μ^{-}μ^{+}μ^{-})=[5.0±0.8(stat)±0.7(syst)±0.7(B_{2μ})]×10^{-9} is measured, where the last term is the uncertainty in the normalization channel branching fraction. This work achieves an improved precision of over 5 orders of magnitude compared to previous results, leading to the first measurement of this branching fraction, which is found to agree with theoretical predictions.
  3. Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2024 Jan 26;132(4):041802.
    PMID: 38335361 DOI: 10.1103/PhysRevLett.132.041802
    A search for dark matter in events with a displaced nonresonant muon pair and missing transverse momentum is presented. The analysis is performed using an integrated luminosity of 138  fb^{-1} of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV produced by the LHC in 2016-2018. No significant excess over the predicted backgrounds is observed. Upper limits are set on the product of the inelastic dark matter production cross section σ(pp→A^{'}→χ_{1}χ_{2}) and the decay branching fraction B(χ_{2}→χ_{1}μ^{+}μ^{-}), where A^{'} is a dark photon and χ_{1} and χ_{2} are states in the dark sector with near mass degeneracy. This is the first dedicated collider search for inelastic dark matter.
  4. Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2024 Feb 09;132(6):061801.
    PMID: 38394587 DOI: 10.1103/PhysRevLett.132.061801
    The first search for scalar leptoquarks produced in τ-lepton-quark collisions is presented. It is based on a set of proton-proton collision data recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138  fb^{-1}. The reconstructed final state consists of a jet, significant missing transverse momentum, and a τ lepton reconstructed through its hadronic or leptonic decays. Limits are set on the product of the leptoquark production cross section and branching fraction and interpreted as exclusions in the plane of the leptoquark mass and the leptoquark-τ-quark coupling strength.
  5. Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2024 Mar 15;132(11):111901.
    PMID: 38563916 DOI: 10.1103/PhysRevLett.132.111901
    A search is reported for near-threshold structures in the J/ψJ/ψ invariant mass spectrum produced in proton-proton collisions at sqrt[s]=13  TeV from data collected by the CMS experiment, corresponding to an integrated luminosity of 135  fb^{-1}. Three structures are found, and a model with quantum interference among these structures provides a good description of the data. A new structure is observed with a local significance above 5 standard deviations at a mass of 6638_{-38}^{+43}(stat)_{-31}^{+16}(syst)  MeV. Another structure with even higher significance is found at a mass of 6847_{-28}^{+44}(stat)_{-20}^{+48}(syst)  MeV, which is consistent with the X(6900) resonance reported by the LHCb experiment and confirmed by the ATLAS experiment. Evidence for another new structure, with a local significance of 4.7 standard deviations, is found at a mass of 7134_{-25}^{+48}(stat)_{-15}^{+41}(syst)  MeV. Results are also reported for a model without interference, which does not fit the data as well and shows mass shifts up to 150 MeV relative to the model with interference.
  6. Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2024 Mar 22;132(12):121901.
    PMID: 38579207 DOI: 10.1103/PhysRevLett.132.121901
    The observation of WWγ production in proton-proton collisions at a center-of-mass energy of 13 TeV with an integrated luminosity of 138  fb^{-1} is presented. The observed (expected) significance is 5.6 (5.1) standard deviations. Events are selected by requiring exactly two leptons (one electron and one muon) of opposite charge, moderate missing transverse momentum, and a photon. The measured fiducial cross section for WWγ is 5.9±0.8(stat)±0.8(syst)±0.7(modeling)  fb, in agreement with the next-to-leading order quantum chromodynamics prediction. The analysis is extended with a search for the associated production of the Higgs boson and a photon, which is generated by a coupling of the Higgs boson to light quarks. The result is used to constrain the Higgs boson couplings to light quarks.
  7. Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2024 Jun 14;132(24):241802.
    PMID: 38949350 DOI: 10.1103/PhysRevLett.132.241802
    A search is presented for baryon number violating interactions in top quark production and decay. The analysis uses data from proton-proton collisions at a center-of-mass energy of 13 TeV, collected with the CMS detector at the LHC with an integrated luminosity of 138  fb^{-1}. Candidate events are selected by requiring two oppositely charged leptons (electrons or muons) and exactly one jet identified as originating from a bottom quark. Multivariate discriminants are used to separate the signal from the background. No significant deviation from the standard model prediction is observed. Upper limits are placed on the strength of baryon number violating couplings. For the first time the production of single top quarks via baryon number violating interactions is studied. This allows the search to set the most stringent constraints to date on the branching fraction of the top quark decay to a lepton, an up-type quark (u or c), and a down-type quark (d, s, or b). The results improve the previous bounds by 3 to 6 orders of magnitude based on the fermion flavor combination of the baryon number violating interactions.
  8. Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2024 Jul 05;133(1):011801.
    PMID: 39042800 DOI: 10.1103/PhysRevLett.133.011801
    The first search for singly produced narrow resonances decaying to three well-separated hadronic jets is presented. The search uses proton-proton collision data corresponding to an integrated luminosity of 138  fb^{-1} at sqrt[s]=13  TeV, collected at the CERN LHC. No significant deviations from the background predictions are observed between 1.75 and 9.00 TeV. The results provide the first mass limits on a right-handed boson Z_{R} decaying to three gluons and on an excited quark decaying via a vector boson to three quarks, as well as updated limits on a Kaluza-Klein gluon decaying via a radion to three gluons.
  9. Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2024 Nov 08;133(19):191902.
    PMID: 39576923 DOI: 10.1103/PhysRevLett.133.191902
    The first search for soft unclustered energy patterns (SUEPs) is performed using an integrated luminosity of 138  fb^{-1} of proton-proton collision data at sqrt[s]=13  TeV, collected in 2016-2018 by the CMS detector at the LHC. Such SUEPs are predicted by hidden valley models with a new, confining force with a large 't Hooft coupling. In events with boosted topologies, selected by high-threshold hadronic triggers, the multiplicity and sphericity of clustered tracks are used to reject the background from standard model quantum chromodynamics. With no observed excess of events over the standard model expectation, limits are set on the cross section for production via gluon fusion of a scalar mediator with SUEP-like decays.
  10. Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2024 Aug 16;133(7):071903.
    PMID: 39213583 DOI: 10.1103/PhysRevLett.133.071903
    Energy correlators that describe energy-weighted distances between two or three particles in a hadronic jet are measured using an event sample of sqrt[s]=13  TeV proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of 36.3  fb^{-1}. The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the measured three- and two-particle energy correlator distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading-logarithmic accuracy matched to a next-to-leading-order calculation, the strong coupling is determined at the Z boson mass: α_{S}(m_{Z})=0.1229_{-0.0050}^{+0.0040}, the most precise α_{S}(m_{Z}) value obtained using jet substructure observables.
  11. Aad G, Abbott B, Abeling K, Abicht NJ, Abidi SH, Aboulhorma A, et al.
    Phys Rev Lett, 2024 Jan 12;132(2):021803.
    PMID: 38277607 DOI: 10.1103/PhysRevLett.132.021803
    The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140  fb^{-1} for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is 2.2±0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.
  12. Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2024 Jun 28;132(26):261902.
    PMID: 38996325 DOI: 10.1103/PhysRevLett.132.261902
    A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The datasets used correspond to an integrated luminosity of up to 5 and 20  fb^{-1} of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak t channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is m_{t}=172.52±0.14(stat)±0.30(syst)  GeV, with a total uncertainty of 0.33 GeV.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links