The increase of annual organic wastes generated worldwide has become a major problem for many countries since the mismanagement could bring about negative effects on the environment besides, being costly for an innocuous disposal. Recently, insect larvae have been investigated to valorize organic wastes. This entomoremediation approach is rising from the ability of the insect larvae to convert organic wastes into its biomass via assimilation process as catapulted by the natural demand to complete its lifecycle. Among the insect species, black soldier fly or Hermetia illucens is widely researched since the larvae can grow in various environments while being saprophagous in nature. Even though black soldier fly larvae (BSFL) can ingest various decay materials, some organic wastes such as sewage sludge or lignocellulosic wastes such as waste coconut endosperm are destitute of decent nutrients that could retard the BSFL growth. Hence, blending with nutrient-rich low-cost substrates such as palm kernel expeller, soybean curd residue, etc. is employed to fortify the nutritional contents of larval feeding substrates prior to administering to the BSFL. Alternatively, microbial fermentation can be adopted to breakdown the lignocellulosic wastes, exuding essential nutrients for growing BSFL. Upon reaching maturity, the BSFL can be harvested to serve as the protein and lipid feedstock. The larval protein can be made into insect meal for farmed animals, whilst the lipid source could be extracted and transesterified into larval biodiesel to cushion the global energy demands. Henceforth, this review presents the influence of various organic wastes introduced to feed BSFL, targeting to reduce wastes and producing biochemicals from mature larvae through entomoremediation. Modification of recalcitrant organic wastes via fermentation processes is also unveiled to ameliorate the BSFL growth. Lastly, the sustainable applications of harvested BSFL biomass are as well covered together with the immediate shortcomings that entail further researches.
Low temperature thermal pre-treatment is a low-cost method to break down the structure of extracellular polymeric substances in waste activated sludge (WAS) while improving the sludge biodegradability. However, previous models on low temperature thermal pre-treatment did not adequately elucidate the behaviour of sludge hydrolysis process for the duration ranging from 5 to 9 h. Therefore, this work had developed an inclusive functional model to describe the kinetics of sludge hydrolysis for a wide range of treatment conditions (30 °C-90 °C within 0 and 16 h). As compared with treatment duration, the treatment temperature played a greater impact in solubilizing WAS. Accordingly, the 90 °C treatment had consistently produced WAS with the highest degree of solubility. Nonetheless, the mediocre discrepancies between 90 °C and 75 °C may challenge the practicality of increasing the treatment temperatures beyond 75 °C. The effects of treatment duration on soluble chemical oxygen demand, soluble carbohydrate and soluble protein were only significant during the first 4 h, except for humic substances release that continued to increase with treatment duration. Finally, a good fit with R2 > 0.95 was achieved using an inclusive multivariate non-linear model, substantiating the functionality to predict the kinetics of sludge hydrolysis at arbitrary treatment conditions.
Black soldier fly larvae (BSFL) have been deployed to valorize various organic wastes. Nonetheless, its growth rate whilst being offered with waste activated sludge (WAS) is not promising, likely by virtue of the presence of extracellular polymeric substances' structure in WAS. In this work, the WAS were first thermally pre-treated under different treatment temperatures and durations before being administered as the feeding substrates for BSFL. The results showed the thermal pre-treatment could improve WAS palatability and subsequently, enhance the growth of BSFL especially after the pre-treatments at 75 °C and above. The highest larva weight gained was recorded at 2.16 mg/larva for the WAS sample being pre-treated at 90 °C and 16 h. Furthermore, the samples pre-treated above 75 °C also achieved higher degradation rates, indicating that the 75 °C was a threshold temperature to effectively hydrolyze the WAS. The changes of WAS characteristics, namely, (i) soluble chemical oxygen demand (SCOD), (ii) soluble carbohydrate, (iii) soluble protein, (iv) humic substances and (v) total soluble protein and humic substances, after the thermal pre-treatments were also studied in correlating with the BSFL growth. Accordingly, a model was successfully developed with the highest R2 value attained at 0.95, evidencing the SCOD was the most suitable WAS characteristic to accurately predict the BSFL growth behavior.
The capacity to maximize the proliferation of microalgal cells by means of topologically textured organic solid surfaces under various pH gave rise to the fundamental biophysical analysis of cell-surface attachment in this study. The substrate used in analysis was palm kernel expeller (PKE) in which the microalgal cells had adhered onto its surface. The findings elucidated the relevance of surface properties in terms of surface wettability and surface energy in relation to the attached microalgal growth with pH as the limiting factor. The increase in hydrophobicity of PKE-microalgae attachment was able to facilitate the formation of biofilm better. The pH 5 and pH 11 were found to be the conditions with highest and lowest microalgal growths, respectively, which were in tandem with the highest contact angle value at pH 5 and conversely for pH 11. The work of attachment (Wcs) had supported the derived model with positive values being attained for all the pH conditions, corroborating the thermodynamic feasibility. Finally, this study had unveiled the mechanism of microalgal attachment onto the surface of PKE using the aid of extracellular polymeric surfaces (EPS) from microalgae. Also, the hydrophobic nature of PKE enabled excellent attachment alongside with nutrients for microalgae to grow and from layer-by-layer (LbL) assembly. This assembly was then isolated using organosolv method by means of biphasic solvents, namely, methanol and chloroform, to induce detachment.
More energy is needed nowadays due to global population growth. Concurrently, sewage sludge generation has also increased steadily stemming from the inevitable urbanization. As such, black soldier fly larvae (BSFL) can be potentially deployed to solve both issues. This paper investigates the environmental sustainability of biodiesel production derived from sludge-fed BSFL feedstock. A cradle-to-gate life cycle assessment (LCA) was performed through SimaPro software utilizing the ReCiPe 2016 Midpoint (H) and Endpoint (H) methods. The entire LCA covered 3 main stages, including the thermal pre-treatment of sludge, BSFL rearing and processing, and lastly lipid extraction and biodiesel production. LCA showed that the sludge pre-treatment stage had the highest environmental impact, while BSFL rearing and processing had the least due to the suitable geographical climate. Electricity usage during the pre-treatment stage was the main contributing component, followed by chemical usage during biodiesel production. After normalizing, it was observed that land occupation, marine ecotoxicity, freshwater ecotoxicity and freshwater eutrophication were more impactful than the commonly studied global warming potential (GWP). Lipid content and biodiesel conversion efficiency were determined as the sensitive factors which could influence the LCA outcome. In comparison with other types of biodiesel, BSFL biodiesel had a milder impact in terms of climate change, land occupation, terrestrial acidification, marine and freshwater eutrophication. Furthermore, this biological reduction of sludge through BSFL valorization avoided sludge landfilling, which reduced up to 100 times GWP. Therefore, sludge-fed BSFL biodiesel production is an environmentally-sound and highly potential solution that should be investigated comprehensively.
The current study had conducted the life cycle analysis (LCA) to assess the environmental impact of microalgal wastewater treatment via an integrated membrane bioreactor. The functional unit selected for this analysis was 1 kg of treated microalgal wastewater with contaminants eliminated by ultrafiltration membrane fabricated from recycled polyethylene terephthalate waste. Meanwhile, the applied system boundary in this study was distinguished based on two scenarios, namely, cradle-to-gate encompassed wastewater treatment only and cradle-to-cradle which included the reutilization of treated wastewater to cultivate microalgae again. The environmental impacts and hotspots associated with the different stages of the wastewater treatment process had clearly elucidated that membrane treatment had ensued the highest impact, followed by microalgal harvesting, and finally cultivation. Among the environmental impact categories, water-related impact was found to be prominent in the following series: freshwater ecotoxicity, freshwater eutrophication and marine ecotoxicity. Notably, the key performance indicator of all environmental impact, i.e., the global warming potential was found to be very much lower at 2.94 × 10-4 kg CO2 eq as opposed to other literatures reported on the LCA of wastewater treatments using membranes. Overall, this study had proffered insights into the environmental impact of microalgal wastewater treatment and its stimulus for sustainable wastewater management. The findings of this study can be instrumental in making informed decision for optimizing microalgal wastewater treatment and reutilization assisted by membrane technology with an ultimate goal of enhancing sustainability.
Changing the growth environment for microalgae can overall lead to the fundamental alteration in cellular biochemicals whilst attaching onto palm kernel expeller (PKE) waste to form adhesion complex in easing harvesting at stationary growth phase. This study had initially optimized the PKE dosage, light intensity and photoperiod in maximizing the attached microalgal productivity being attained at 0.72 g/g day. Lipid content increased progressively from pH 3 to pH 11, with the highest value observed at pH 11. Meanwhile, in terms of protein and carbohydrate contents, the highest values were obtained by cultivation medium of pH 5 with 9.92 g and 17.72 g, respectively followed by pH 7 with 9.16 g and 16.36 g, respectively. Moreover, the findings also suggested that the low pH mediums utilized polar interactions in the formation of complexes between PKE and microalgae, whereas at higher pH levels, the non-polar interactions became more significant. The work of attachment was thermodynamically favourable towards the attachment formation with values greater than zero which was also aligned with the microscopic surface topography, i.e., revealing a clustering pattern of microalgae colonizing the PKE surface. These findings contribute to comprehensive understanding of optimizing growth condition and harvesting strategy of attached microalgae in attaining the cellular biochemical components, facilitating the development of efficient and sustainable bioresource utilization.