Displaying all 2 publications

Abstract:
Sort:
  1. Promja S, Puenpa J, Achakulvisut T, Poovorawan Y, Lee SY, Athamanolap P, et al.
    Anal Chem, 2023 Jan 12.
    PMID: 36633573 DOI: 10.1021/acs.analchem.2c05112
    Since the declaration of COVID-19 as a pandemic in early 2020, multiple variants of the severe acute respiratory syndrome-related coronavirus (SARS-CoV-2) have been detected. The emergence of multiple variants has raised concerns due to their impact on public health. Therefore, it is crucial to distinguish between different viral variants. Here, we developed a machine learning web-based application for SARS-CoV-2 variant identification via duplex real-time polymerase chain reaction (PCR) coupled with high-resolution melt (qPCR-HRM) analysis. As a proof-of-concept, we investigated the platform's ability to identify the Alpha, Delta, and wild-type strains using two sets of primers. The duplex qPCR-HRM could identify the two variants reliably in as low as 100 copies/μL. Finally, the platform was validated with 167 nasopharyngeal swab samples, which gave a sensitivity of 95.2%. This work demonstrates the potential for use as automated, cost-effective, and large-scale viral variant surveillance.
  2. Chaibun T, Puenpa J, Ngamdee T, Boonapatcharoen N, Athamanolap P, O'Mullane AP, et al.
    Nat Commun, 2021 02 05;12(1):802.
    PMID: 33547323 DOI: 10.1038/s41467-021-21121-7
    Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Diagnosis of COVID-19 depends on quantitative reverse transcription PCR (qRT-PCR), which is time-consuming and requires expensive instrumentation. Here, we report an ultrasensitive electrochemical biosensor based on isothermal rolling circle amplification (RCA) for rapid detection of SARS-CoV-2. The assay involves the hybridization of the RCA amplicons with probes that were functionalized with redox active labels that are detectable by an electrochemical biosensor. The one-step sandwich hybridization assay could detect as low as 1 copy/μL of N and S genes, in less than 2 h. Sensor evaluation with 106 clinical samples, including 41 SARS-CoV-2 positive and 9 samples positive for other respiratory viruses, gave a 100% concordance result with qRT-PCR, with complete correlation between the biosensor current signals and quantitation cycle (Cq) values. In summary, this biosensor could be used as an on-site, real-time diagnostic test for COVID-19.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links