Displaying 1 publication

Abstract:
Sort:
  1. Afolabi LT, Saeed F, Hashim H, Petinrin OO
    PLoS One, 2018;13(1):e0189538.
    PMID: 29329334 DOI: 10.1371/journal.pone.0189538
    Pharmacologically active molecules can provide remedies for a range of different illnesses and infections. Therefore, the search for such bioactive molecules has been an enduring mission. As such, there is a need to employ a more suitable, reliable, and robust classification method for enhancing the prediction of the existence of new bioactive molecules. In this paper, we adopt a recently developed combination of different boosting methods (Adaboost) for the prediction of new bioactive molecules. We conducted the research experiments utilizing the widely used MDL Drug Data Report (MDDR) database. The proposed boosting method generated better results than other machine learning methods. This finding suggests that the method is suitable for inclusion among the in silico tools for use in cheminformatics, computational chemistry and molecular biology.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links